top of page

Search results

698 results found with an empty search

  • Find A Job | AlgoSec

    Join Algosec and be part of a global team driving innovation in network security. Explore exciting career opportunities and grow with us. Find a job By Job Category By Location By Keyword - Found 31 Positions - Software Developer, India Read More Professional Services Engineer, India Read More Release Manager- Temporary position, Israel Read More Automation TL, India Read More Regional Sales Engineer, Mid Atlantic Read More Software Developer, Israel Read More Regional Sales Manager, Canada Read More Technical Support Engineer, Brazil Read More Technical Support Engineer, India Read More Regional Sales Engineer, Southeast Read More Regional Sales Manager, Ohio Valley Read More Regional Sales Manager, Pacific NW Rockies Read More Suite Software Developer, India Read More Prevasio Automation Developer, India Read More Automation Team Lead Read More Customer Success Manager (Technical), UK Read More CloudFlow Automation Developer, India Read More Customer Success Manager (Technical), US Read More Regional Sales Manager, DACH Read More Commercial Legal Counsel, US Read More Product Manager, Americas Read More Software Developer (Devices), India Read More Customer Success Manager, India Read More Full Stack Automation Developer, India Read More IT Engineer- Student Read More Product Marketing Manager, IL Read More Assistant Controller, Israel Read More Software Developer Student, Israel Read More Channel Manager, West Read More ARE, Netherlands Read More AlgoNext Automation Developer, India Read More

  • AlgoSec JumpStart Packages - AlgoSec

    AlgoSec JumpStart Packages Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Sevices partners | AlgoSec

    Explore the wide range of network devices and platforms supported by Algosec for seamless security policy management and automation. Technology Partners Professional Services Avantec Compugraf HoneyTek Orange Perket SecureLink Wantegrity inc. Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue Training Services Orange Perket Support Partners Avantec ObservatoryCrest

  • AlgoSec ISO/IEC 27001 Certificate - AlgoSec

    AlgoSec ISO/IEC 27001 Certificate Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | NGFW vs UTM: What you need to know

    Podcast: Differences between UTM and NGFW In our recent webcast discussion alongside panelists from Fortinet, NSS Labs and General... Firewall Change Management NGFW vs UTM: What you need to know Sam Erdheim 2 min read Sam Erdheim Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/19/13 Published Podcast: Differences between UTM and NGFW In our recent webcast discussion alongside panelists from Fortinet, NSS Labs and General Motors, we examined the State of the Firewall in 2013. We received more audience questions during the webcast than the time allowed for, so we’d like to answer these questions through several blog posts in a Q&A format with the panelists. By far the most asked question leading up to and during the webcast was: “What’s the difference between a UTM and a Next-Generation Firewall?” Here’s how our panelists responded: Pankil Vyas, Manager – Network Security Center, GM UTM are usually bundled feature set, NGFW has bundle but licensing can be selective. Depending on the firewall’s function on the network, some UTM features might not be useful, creating performance issues and sometimes firewall conflicts with packet flows. Nimmy Reichenberg, VP of Strategy, AlgoSec Different people give different answers to this question, but if we refer to Gartner who are certainly a credible source, a UTM consolidates many security functions (email security, AV, IPS, URL filtering etc.) and is tailored mostly to SMBs in terms of management capabilities, throughput, support, etc. A NGFW is an enterprise-grade product that at the very least includes IPS capabilities and application awareness (layer 7 control). You can refer to a Gartner paper titled “Defining the Next-Generation Firewall” for more information. Ryan Liles, Director of Testing Services, NSS Labs There really aren’t any differences in a UTM and a NGFW. The technologies used in the two are essentially the same, and they generally have the same capabilities. UTM devices are typically classified with lower throughput ratings than their NGFW counterparts, but for all practical purposes the differences are in marketing. The term NGFW was coined by vendors working with Gartner to create a class of products capable of fitting into an enterprise network that contained all of the features of a UTM. The reason for the name shift is that there was a pervasive line of thought stating a device capable of all of the functions of a UTM/NGFW would never be fast enough to run in an enterprise network. As hardware has progressed, the capability of these devices to hit multi-gigabit speeds began to prove that they were indeed capable of enterprise deployment. Rather than try and fight the sentiment that a UTM could never fit into an enterprise, the NGFW was born. Patrick Bedwell, VP of Products, Fortinet There are several definitions in the market of both terms. Analyst firms IDC and Gartner provided the original definitions of the terms. IDC defined UTM as a security appliance that combines firewall, gateway antivirus, and intrusion detection / intrusion prevention (IDS/IPS). Gartner defined an NGFW as a single device with integrated IPS with deep packet scanning, standard first-generation FW capabilities (NAT, stateful protocol inspection, VPN, etc.) and the ability to identity and control applications running on the network. Since their initial definitions, the terms have been used interchangeably by customers as well as vendors. Depending on with whom you speak, UTM can include NGFW features like application ID and control, and NGFW can include UTM features like gateway antivirus. The terms are often used synonymously, as both represent a single device with consolidated functionality. At Fortinet, for example, we offer customers the ability to deploy a FortiGate device as a pure firewall, an NGFW (enabling features like Application Control or User- and Device-based policy enforcement) or a full UTM (enabling additional features like gateway AV, WAN optimization, and so forth). Customers can deploy as much or as little of the technology on the FortiGate device as they need to match their requirements. If you missed the webcast, you can view it on-demand. We invite you to continue this debate and discussion by commenting here on the blog or via the Twitter hashtag Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Top Two Cloud Security Concepts You Won’t Want to Overlook

    Organizations transitioning to the cloud require robust security concepts to protect their most critical assets, including business... Cloud Security Top Two Cloud Security Concepts You Won’t Want to Overlook Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/24/22 Published Organizations transitioning to the cloud require robust security concepts to protect their most critical assets, including business applications and sensitive data. Rony Moshkovitch, Prevasio’s co-founder, explains these concepts and why reinforcing a DevSecOps culture would help organizations strike the right balance between security and agility. In the post-COVID era, enterprise cloud adoption has grown rapidly. Per a 2022 security survey , over 98% of organizations use some form of cloud-based infrastructure. But 27% have also experienced a cloud security incident in the previous 12 months. So, what can organizations do to protect their critical business applications and sensitive data in the cloud? Why Consider Paved Road, Guardrails, and Least Privilege Access for Cloud Security It is in the organization’s best interest to allow developers to expedite the lifecycle of an application. At the same time, it’s the security teams’ job to facilitate this process in tandem with the developers to help them deliver a more secure application on time. As organizations migrate their applications and workloads to a multi-cloud platform, it’s incumbent to use a Shift left approach to DevSecOps. This enables security teams to build tools, and develop best practices and guidelines that enable the DevOps teams to effectively own the security process during the application development stage without spending time responding to risk and compliance violations issued by the security teams. This is where Paved Road, Guardrails and Least Privilege could add value to your DevSecOps. Concept 1: The Paved Road + Guardrails Approach Suppose your security team builds numerous tools, establishes best practices, and provides expert guidance. These resources enable your developers to use the cloud safely and protect all enterprise assets and data without spending all their time or energy on these tasks. They can achieve these objectives because the security team has built a “paved road” with strong “guardrails” for the entire organization to follow and adopt. By following and implementing good practices, such as building an asset inventory, creating safe templates, and conducting risk analyses for each cloud and cloud service, the security team enables developers to execute their own tasks quickly and safely. Security staff will implement strong controls that no one can violate or bypass. They will also clearly define a controlled exception process, so every exception is clearly tracked and accountability is always maintained. Over time, your organization may work with more cloud vendors and use more cloud services. In this expanding cloud landscape, the paved road and guardrails will allow users to do their jobs effectively in a security-controlled manner because security is already “baked in” to everything they work with. Moreover, they will be prevented from doing anything that may increase the organization’s risk of breaches, thus keeping you safe from the bad guys. How Paved Road Security and Guardrails Can Be Applied Successfully Example 1: Set Baked-in Security Controls Remember to bake security into reusable Terraform templates or AWS CloudFormation modules of paved roads. You may apply this tactic to provision new infrastructure, create new storage buckets, or adopt new cloud services. When you create a paved road and implement appropriate guardrails, all your golden modules and templates are already secure from the outset – safeguarding your assets and preventing undesirable security events. Example 2: Introducing Security Standardizations When creating resource functions with built-in security standards, developers should adhere to these standards to confidently configure required resources without introducing security issues into the cloud ecosystem. Example 3: Automating Security with Infrastructure as Code (IaC) IaC is a way to manage and provision new infrastructure by coding specifications instead of following manual processes. To create a paved road for IaC, the security team can introduce tagging to provision and track cloud resources. They can also incorporate strong security guardrails into the development environment to secure the new infrastructure right from the outset. Concept 2: The Principle of Least Privileged Access (PoLP) The Principle of Least Privilege Access (PoLP) is often synonymous with Zero Trust. PoLP is about ensuring that a user can only access the resources they need to complete a required task. The idea is to prevent the misuse of critical systems and data and reduce the attack surface to decrease the probability of breaches. How Can PoLP Be Applied Successfully Example 1: Ring-fencing critical assets This is the process of isolating specific “crown jewel” applications so that even if an attacker could make it into your environment, they would be unable to reach that data or application. As few people as possible would be given credentials that allow access, therefore following least privilege access rules. Crown jewel applications could be anything from where sensitive customer data is stored, to business-critical systems and processes. Example 2: Establishing Role Based Access Control (RABC) Based on the role that they hold at the company, RBAC or role-based access control allows specific access to certain data or applications, or parts of the network. This goes hand in hand with the principle of least privilege, and means that if credentials are stolen, the attackers are limited to what access the employee in question holds. As this is based on users, you could isolate privileged user sessions specifically to keep them with an extra layer of protection. Only if an administrator account or one with wide access privilege is stolen, would the business be in real trouble. Example 3: Isolate applications, tiers, users, or data This task is usually done with micro-segmentation, where specific applications, users, data, or any other element of the business is protected from an attack with internal, next-gen firewalls. Risk is reduced in a similar way to the examples above, where the requisite access needed is provided using the principle of least privilege to allow access to only those who need it, and no one else. In some situations, you might need to allow elevated privileges for a short period of time, for example during an emergency. Watch out for privilege creep, where users gain more access over time without any corrective oversight. Conclusion and Next Steps Paved Road, Guardrails and PoLP concepts are all essential for a strong cloud security posture. By adopting these concepts, your organization can move to the next stage of cloud security maturity and create a culture of security-minded responsibility at every level of the enterprise. The Prevasio cloud security platform allows you to apply these concepts across your entire cloud estate while securing your most critical applications. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Firewall troubleshooting steps & solutions to common issues

    Problems with firewalls can be quite disastrous to your operations. When firewall rules are not set properly, you might deny all... Firewall Change Management Firewall troubleshooting steps & solutions to common issues Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 8/10/23 Published Problems with firewalls can be quite disastrous to your operations. When firewall rules are not set properly, you might deny all requests, even valid ones, or allow access to unauthorized sources. There needs to be a systematic way to troubleshoot your firewall issues, and you need to have a proper plan. You should consider security standards, hardware/software compatibility, security policy planning , and access level specifications. It is recommended to have an ACL (access control list) to determine who has access to what. Let us give you a brief overview of firewall troubleshooting best practices and steps to follow. Common firewall problems With the many benefits that firewalls bring, they might also pop out some errors and issues now and then. You need to be aware of the common issues, failures, and error codes to properly assess an error condition to ensure the smooth working of your firewalls. Misconfiguration errors A report by Gartner Research says that misconfiguration causes about 95% of all firewall breaches. A simple logical flaw in a firewall rule can open up vulnerabilities, leading to serious security breaches. Before playing with your firewall settings, you must set up proper access control settings and understand the security policy specifications. You must remember that misconfiguration errors in CLI can lead to hefty fines for non-compliance, data breaches , and unnecessary downtimes. All these can cause heavy monetary damages; hence, you should take extra care to configure your firewall rules and settings properly. Here are some common firewall misconfigurations: Allowing ICMP and making the firewall available for ping requests Providing unnecessary services on the firewall Allowing unused TCP/UDP ports The firewall is set to return a ‘deny’ response instead of a ‘drop’ for blocked ports. IP address misconfigurations that can allow TCP pinging of internal hosts from external devices. Trusting DNS and IP addresses that are not properly checked and source verified. Check out AlgoSec’s firewall configuration guide for best practices. Hardware issues Hardware bottlenecks and device misconfigurations can easily lead to firewall failures. Sometimes, running a firewall 24/7 can overload your hardware and lead to a lowered network performance of your entire system. You should look into the performance issues and optimize firewall functionalities or upgrade your hardware accordingly. Software vulnerabilities Any known vulnerability with your firewall software must be dealt with immediately. Hackers can exploit software vulnerabilities easily to gain backdoor entry into your network. So, stay current with all the patches and updates your software vendors provide. Types of firewall issues Most firewall issues can be classified as either connectivity or performance issues. Here are some tools you can use in each of these cases: Connectivity Issues Some loss of access to a network resource or unavailability usually characterizes these issues. You can use network connectivity tools like NetStat to monitor and analyze the inbound TCP/UDP packets. Both these tools have a wide range of sub-commands and tools that help you trace IP network traffic and control the traffic as per your requirements. Firewall Performance Issues As discussed earlier, performance issues can cause a wide range of issues, such as unplanned downtimes and firewall failures, leading to security breaches and slow network performance. Some of the ways you can rectify it include: Load balancing by regulating the outbound network traffic by limiting the internal server errors and streamlining the network traffic. Filtering the incoming network traffic with the help of Standard Access Control List filters. Simplifying firewall rules to reduce the load on the firewall applications. You can remove unused rules and break down complex rules to improve performance. Firewall troubleshooting checklist steps Step 1. Audit your hardware & software Create a firewall troubleshooting checklist to check your firewall rules, software vulnerabilities, hardware settings, and more based on your operating system. This should include all the items you should cover as part of your security policy and network assessment. With Algosec’s policy management , you can ensure that your security policy is complete, comprehensive and does not miss out on anything important. Step 2. Pinpoint the Issue Check what the exact issue is. Generally, a firewall issue can arise from any of the three conditions: Access from external networks/devices to protected resources is not functioning properly Access from the protected network/resources to unprotected resources is not functioning properly. Access to the firewall is not functioning properly. Step 3. Determine the traffic flow Once you have ascertained the exact access issue, you should check whether the issue is raised when traffic is going to the firewall or through the firewall. Once you have narrowed down this issue, you can test the connectivity accordingly and determine the underlying cause. Check for any recent updates and try to roll back if that can solve the issue. Go through your firewall permissions and logs for any error messages or warnings. Review your firewall rules and configurations and adjust them for proper working. Depending upon your firewall installation, you can make a checklist of items. Here is a simple guide you can follow to conduct routine maintenance troubleshooting . Monitor the network, test it out, and repeat the process until you reach a solution. Firewall troubleshooting best practices Here are some proven firewall troubleshooting tips. For more in-depth information, check out our Network Security FAQs page. Monitor and test Regular auditing and testing of your Microsoft firewall can help you catch vulnerabilities early and ensure good performance throughout the year. You can use expert-assisted penetration testing to get a good idea of the efficacy of your firewalls. Also be sure to check out the auditing services from Algosec , especially for your PCI security compliance . Deal with insider threats While a Mac or Windows firewall can help you block external threats to an extent, it can be powerless regarding insider attacks. Make sure you enforce strong security controls to avoid any such conditions. Your security policies must be crafted well to avoid any room for such conditions, and your access level specifications should also be well-defined. Device connections Make sure to pay attention to the other modes of attack that can happen besides a network access attempt. If an infected device such as a USB, router, hard drive, or laptop is directly connected to your system, your network firewall can do little to prevent the attack. So, you should put the necessary device restrictions in your privacy statement and the firewall rules. Review and Improve Update your firewall rules and security policies with regular audits and tests. Here are some more tips you can follow to improve your firewall security: Optimize your firewall ruleset to allow only necessary access Use unique user IP instead of a root ID to launch the firewall services Make use of a protected remote Syslog server and keep it safe from unauthorized access Analyze your firewall logs regularly to identify and detect any suspicious activity. You can use tools like Algosec Firewall Analyzer and expert help to analyze your firewall as well. Disable FTP connections by default Setup strict controls on how and which users can modify firewall configurations. Include both source and destination IP addresses and the ports in your firewall rules. Document all the updates and changes made to your firewall policies and rules. In the case of physical firewall implementations, restrict the physical access as well. Use NAT (network address translation) to map multiple private addresses to a public IP address before transmitting the information online. How does a firewall actually work? A Windows firewall is a network security mechanism that allows you to restrict incoming network traffic to your systems. It can be implemented as a hardware, software, or cloud-based security solution . It acts as a barrier stopping unauthorized network access requests from reaching your internal network and thus minimizing any attempt at hacking or breach of confidential data . Based on the type of implementation and the systems it is protecting, firewalls can be classified into several different types. Some of the common types of firewalls are: Packet filtering – Based on the filter standards, a small amount of incoming data is analyzed and subjected to restriction on distribution across the network. Proxy service – An application layer service that acts as an intermediary between the actual servers to block out unauthorized access requests. Stateful inspection – A dynamic packet filtering mechanism that filters out the network packets. Next-Generation Firewall (NGFW) – A combination of deep packet inspection and application level inspection to block out unauthorized access into the network. Firewalls are essential to network security at all endpoints, whether personal computers or full-scale enterprise data centers. They allow you to set up strong security controls to prevent a wide range of cyberattacks and help you gain valuable data. Firewalls can help you detect suspicious activities and prevent intrusive attacks at the earliest. They can also help you regulate your incoming and outgoing traffic routing, helping you implement zero-trust security policies and stay compliant with security and data standards. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | CSPM importance for CISOs. What security issues can be prevented\defended with CSPM?

    Cloud Security is a broad domain with many different aspects, some of them human. Even the most sophisticated and secure systems can be... Cloud Security CSPM importance for CISOs. What security issues can be prevented\defended with CSPM? Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/17/21 Published Cloud Security is a broad domain with many different aspects, some of them human. Even the most sophisticated and secure systems can be jeopardized by human elements such as mistakes and miscalculations. Many organizations are susceptible to such dangers, especially during critical tech configurations and transfers. Especially for example, during digital transformation and cloud migration may result in misconfigurations that can leave your critical applications vulnerable and your company’s sensitive data an easy target for cyber-attacks. The good news is that Prevasio, and other cybersecurity providers have brought in new technologies to help improve the cybersecurity situation across multiple organizations. Today, we discuss Cloud Security Posture Management (CSPM) and how it can help prevent not just misconfigurations in cloud systems but also protect against supply chain attacks. Understanding Cloud Security Posture Management First, we need to fully understand what a CSPM is before exploring how it can prevent cloud security issues. CSPM is first of all a practice for adopting security best practices as well as automated tools to harden and manage the company security strength across various cloud based services such as Software as a Service (SaaS), Infrastructure as a Service (IaaS), and Platform as a Service (PaaS). These practices and tools can be used to determine and solve many security issues within a cloud system. Not only is CSPM critical to the growth and integrity of your cloud infrastructure, but it’s also mandatory for organizations with CIS, GDPR, PCI-DSS, NIST, HIPAA and similar compliance requirements. How Does CSPM Work? There are numerous cloud service providers such as AWS , Azure , Google Cloud, and others that provide hyper scaling cloud hosted platforms as well as various cloud compute services and solutions to organizations that previously faced many hurdles with their on-site cloud infrastructures. When you migrate your organization to these platforms, you can effectively scale up and cut down on on-site infrastructure spending. However, if not appropriately handled, cloud migration comes with potential security risks. For instance, an average Lift and Shift transfer that involves a legacy application may not be adequately security hardened or reconfigured for safe use in a public cloud setup. This may result in security loopholes that expose the network and data to breaches and attacks. Cloud misconfiguration can happen in multiple ways. However, the most significant risk is not knowing that you are endangering your organization with such misconfigurations. That being the case, below are a few examples of cloud misconfigurations that can be identified and solved by CSPM tools such as Prevasio within your cloud infrastructure: Improper identity and access management : Your organization may not have the best identity and access management system in place. For instance, lack of Multi-Factor Authentication (MFA) for all users, unreliable password hygiene, and discriminatory user policies instead of group access, Role-based access, and everything contrary to best practices, including least privilege. You are unable to log in to events in your cloud due to an accidental CloudTrail error. Cloud storage misconfigurations : Having unprotected S3 buckets on AWS or Azure. CSPM can compute situations that have the most vulnerabilities within applications Incorrect secret management : Secret credentials are more than user passwords or pins. They include encryption keys, API keys, among others. For instance, every admin must use encryption keys on the server-side and rotate the keys every 90 days. Failure to do this can lead to credentials misconfigurations. Ideally, part of your cloud package must include and rely on solutions such as AWS Secrets Manager , Azure Key Vault , and other secrets management solutions. The above are a mere few examples of common misconfigurations that can be found in your cloud infrastructure, but CSPM can provide additional advanced security and multiple performance benefits. Benefits Of CSPM CSPM manages your cloud infrastructure. Some of the benefits of having your cloud infrastructure secured with CSPM boils down to peace of mind, that reassurance of knowing that your organization’s critical data is safe. It further provides long-term visibility to your cloud networks, enables you to identify violations of policies, and allows you to remediate your misconfigurations to ensure proper compliance. Furthermore, CSPM provides remediation to safeguard cloud assets as well as existing compliance libraries. Technology is here to stay, and with CSPM, you can advance the cloud security posture of your organization. To summarize it all, here are what you should expect with CSPM cloud security: Risk assessment : CSPM tools can enable you to see your network security level in advance to gain visibility into security issues such as policy violations that expose you to risk. Continuous monitoring : Since CSPM tools are versatile they present an accurate view of your cloud system and can identify and instantly flag off policy violations in real-time. Compliance : Most compliance laws require the adoption of CIS, NIST, PCI-DSS, SOC2, HIPAA, and other standards in the cloud. With CSPM, you can stay ahead of internal governance, including ISO 27001. Prevention : Most CSPM allows you to identify potential vulnerabilities and provide practical recommendations to prevent possible risks presented by these vulnerabilities without additional vendor tools. Supply Chain Attacks : Some CSPM tools, such as Prevasio , provides you malware scanning features to your applications, data, and their dependency chain on data from external supply chains, such as git imports of external libraries and more. With automation sweeping every industry by storm, CSPM is the future of all-inclusive cloud security. With cloud security posture management, you can do more than remediate configuration issues and monitor your organization’s cloud infrastructure. You’ll also have the capacity to establish cloud integrity from existing systems and ascertain which technologies, tools, and cloud assets are widely used. CSPM’s capacity to monitor cloud assets and cyber threats and present them in user-friendly dashboards is another benefit that you can use to explore, analyze and quickly explain to your team(s) and upper management. Even find knowledge gaps in your team and decide which training or mentorship opportunities your security team or other teams in the organization might require. Who Needs Cloud Security Posture Management? At the moment, cloud security is a new domain that its need and popularity is growing by the day. CSPM is widely used by organizations looking to maximize in a safe way the most of all that hyper scaling cloud platforms can offer, such as agility, speed, and cost-cutting strategies. The downside is that the cloud also comes with certain risks, such as misconfigurations, vulnerabilities and internal\external supply chain attacks that can expose your business to cyber-attacks. CSPM is responsible for protecting users, applications, workloads, data, apps, and much more in an accessible and efficient manner under the Shared Responsibility Model. With CSPM tools, any organization keen on enhancing its cloud security can detect errors, meet compliance regulations, and orchestrate the best possible defenses. Let Prevasio Solve Your Cloud Security Needs Prevasio’s Next-Gen CSPM solution focus on the three best practices: light touch\agentless approach, super easy and user-friendly configuration, easy to read and share security findings context, for visibility to all appropriate users and stakeholders in mind. Our cloud security offerings are ideal for organizations that want to go beyond misconfiguration, legacy compliance or traditional vulnerability scanning. We offer an accelerated visual assessment of your cloud infrastructure, perform automated analysis of a wide range of cloud assets, identify policy errors, supply-chain threats, and vulnerabilities and position all these to your unique business goals. What we provide are prioritized recommendations for well-orchestrated cloud security risk mitigations. To learn more about us, what we do, our cloud security offerings, and how we can help your organization prevent cloud infrastructure attacks, read all about it here . Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Shaping tomorrow: Leading the way in cloud security

    Cloud computing has become a cornerstone of business operations, with cloud security at the forefront of strategic concerns. In a recent... Cloud Network Security Shaping tomorrow: Leading the way in cloud security Adel Osta Dadan 2 min read Adel Osta Dadan Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. cnapp Tags Share this article 12/28/23 Published Cloud computing has become a cornerstone of business operations, with cloud security at the forefront of strategic concerns. In a recent SANS webinar , our CTO Prof. Avishai Wool discussed why more companies are becoming more concerned protecting their containerized environments, given the fact that they are being targeted in cloud-based breaches more than ever. Watch the SANS webinar now! Embracing CNAPP (Cloud-Native Application Protection Platform) is crucial, particularly for its role in securing these versatile yet vulnerable container environments. Containers, encapsulating code and dependencies, are pivotal in modern application development, offering portability and efficiency. Yet, they introduce unique security challenges. With 45% of breaches occurring in cloud-based settings, the emphasis on securing containers is more critical than ever. CNAPP provides a comprehensive shield, addressing specific vulnerabilities inherent to containers, such as configuration errors or compromised container images. The urgent need for skilled container security experts The deployment of CNAPP solutions, while technologically advanced, also hinges on human expertise. The shortage of skills in cloud security management, particularly around container technologies, poses a significant challenge. As many as 35% of IT decision-makers report difficulties in navigating data privacy and security management, underscoring the urgent need for skilled professional’s adept in CNAPP and container security. The economic stakes of failing to secure cloud environments, especially containers, are high. Data breaches, on average, cost companies a staggering $4.35 million . This figure highlights not just the financial repercussions but also the potential damage to reputation and customer trust. CNAPP’s role extends beyond security, serving as a strategic investment against these multifaceted risks. As we navigate the complexitis of cloud security, CNAPP’s integration for container protection represents just one facet of a broader strategy. Continuous monitoring, regular security assessments, and a proactive approach to threat detection and response are also vital. These practices ensure comprehensive protection and operational resilience in a landscape where cloud dependency is rapidly increasing. The journey towards securing cloud environments, with a focus on containers, is an ongoing endeavour. The strategic implementation of CNAPP, coupled with a commitment to cultivating skilled cybersecurity expertise, is pivotal. By balancing advanced technology with professional acumen, organizations can confidently navigate the intricacies of cloud security, ensuring both digital and economic resilience in our cloud-dependent world. #CNAPP Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | How To Reduce Attack Surface: 6 Proven Tactics

    How To Reduce Attack Surface: 6 Proven Tactics Security-oriented organizations continuously identify, monitor, and manage... Cyber Attacks & Incident Response How To Reduce Attack Surface: 6 Proven Tactics Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/20/23 Published How To Reduce Attack Surface: 6 Proven Tactics Security-oriented organizations continuously identify, monitor, and manage internet-connected assets to protect them from emerging attack vectors and potential vulnerabilities. Security teams go through every element of the organization’s security posture – from firewalls and cloud-hosted assets to endpoint devices and entry points – looking for opportunities to reduce security risks. This process is called attack surface management. It provides a comprehensive view into the organization’s cybersecurity posture, with a neatly organized list of entry points, vulnerabilities, and weaknesses that hackers could exploit in a cyberattack scenario. Attack surface reduction is an important element of any organization’s overall cybersecurity strategy. Security leaders who understand the organization’s weaknesses can invest resources into filling the most critical gaps first and worrying about low-priority threats later. What assets make up your organization’s attack surface? Your organization’s attack surface is a detailed list of every entry point and vulnerability that an attacker could exploit to gain unauthorized access. The more entry points your network has, the larger its attack surface will be. Most security leaders divide their attention between two broad types of attack surfaces: The digital attack surface This includes all network equipment and business assets used to transfer, store, and communicate information. It is susceptible to phishing attempts , malware risks, ransomware attacks, and data breaches. Cybercriminals may infiltrate these kinds of assets by bypassing technical security controls, compromising unsecured apps or APIs, or guessing weak passwords. The physical attack surface This includes business assets that employees, partners, and customers interact with physically. These might include hardware equipment located inside data centers and USB access points. Even access control systems for office buildings and other non-cyber threats may be included. These assets can play a role in attacks that involve social engineering, insider threats, and other malicious actors who work in-person. Even though both of these attack surfaces are distinct, many of their security vulnerabilities and potential entry points overlap in real-life threat scenarios. For example, thieves might steal laptops from an unsecured retail location and leverage sensitive data on those devices to launch further attacks against the organization’s digital assets. Organizations that take steps to minimize their attack surface area can reduce the risks associated with this kind of threat. Known Assets, Unknown Assets, and Rogue Assets All physical and digital business assets fall into one of three categories: Known assets are apps, devices, and systems that the security team has authorized to connect to the organization’s network. These assets are included in risk assessments and they are protected by robust security measures, like network segmentation and strict permissions. Unknown assets include systems and web applications that the security team is not aware of. These are not authorized to access the network and may represent a serious security threat. Shadow IT applications may be part of this category, as well as employee-owned mobile devices storing sensitive data and unsecured IoT devices. Rogue assets connect to the network without authorization, but they are known to security teams. These may include unauthorized user accounts, misconfigured assets, and unpatched software. A major part of properly managing your organization’s attack surface involves the identification and remediation of these risks. Attack Vectors Explained: Minimize Risk by Following Potential Attack Paths When conducting attack surface analysis, security teams have to carefully assess the way threat actors might discover and compromise the organization’s assets while carrying out their attack. This requires the team to combine elements of vulnerability management with risk management , working through the cyberattack kill chain the way a hacker might. Some cybercriminals leverage technical vulnerabilities in operating systems and app integrations. Others prefer to exploit poor identity access management policies, or trick privileged employees into giving up their authentication credentials. Many cyberattacks involve multiple steps carried out by different teams of threat actors. For example, one hacker may specialize in gaining initial access to secured networks while another focuses on using different tools to escalate privileges. To successfully reduce your organization’s attack surface, you must follow potential attacks through these steps and discover what their business impact might be. This will provide you with the insight you need to manage newly discovered vulnerabilities and protect business assets from cyberattack. Some examples of common attack vectors include: API vulnerabilities. APIs allow organizations to automate the transfer of data, including scripts and code, between different systems. Many APIs run on third-party servers managed by vendors who host and manage the software for customers. These interfaces can introduce vulnerabilities that internal security teams aren’t aware of, reducing visibility into the organization’s attack surface. Unsecured software plugins. Plugins are optional add-ons that enhance existing apps by providing new features or functionalities. They are usually made by third-party developers who may require customers to send them data from internal systems. If this transfer is not secured, hackers may intercept it and use that information to attack the system. Unpatched software. Software developers continuously release security patches that address emerging threats and vulnerabilities. However, not all users implement these patches the moment they are released. This delay gives attackers a key opportunity to learn about the vulnerability (which is as easy as reading the patch changelog) and exploit it before the patch is installed. Misconfigured security tools. Authentication systems, firewalls, and other security tools must be properly configured in order to produce optimal security benefits. Attackers who discover misconfigurations can exploit those weaknesses to gain entry to the network. Insider threats. This is one of the most common attack vectors, yet it can be the hardest to detect. Any employee entrusted with sensitive data could accidentally send it to the wrong person, resulting in a data breach. Malicious insiders may take steps to cover their tracks, using their privileged permissions and knowledge of the organization to go unnoticed. 6 Tactics for Reducing Your Attack Surface 1. Implement Zero Trust The Zero Trust security model assumes that data breaches are inevitable and may even have already occurred. This adds new layers to the problems that attack surface management resolves, but it can dramatically improve overall resilience and preparedness. When you develop your security policies using the Zero Trust framework, you impose strong limits on what hackers can and cannot do after gaining initial access to your network. Zero Trust architecture blocks attackers from conducting lateral movement, escalating their privileges, and breaching critical data. For example, IoT devices are a common entry point into many networks because they don’t typically benefit from the same level of security that on-premises workstations receive. At the same time, many apps and systems are configured to automatically trust connections from internet-enabled sensors and peripheral devices. Under a Zero Trust framework, these connections would require additional authentication. The systems they connect to would also need to authenticate themselves before receiving data. Multi-factor authentication is another part of the Zero Trust framework that can dramatically improve operational security. Without this kind of authentication in place, most systems have to accept that anyone with the right username and password combination must be a legitimate user. In a compromised credential scenario, this is obviously not the case. Organizations that develop network infrastructure with Zero Trust principles in place are able to reduce the number of entry points their organization exposes to attackers and reduce the value of those entry points. If hackers do compromise parts of the network, they will be unable to quickly move between different segments of the network, and may be unable to stay unnoticed for long. 2. Remove Unnecessary Complexity Unknown assets are one of the main barriers to operational security excellence. Security teams can’t effectively protect systems, apps, and users they don’t have detailed information on. Any rogue or unknown assets the organization is responsible for are almost certainly attractive entry points for hackers. Arbitrarily complex systems can be very difficult to document and inventory properly . This is a particularly challenging problem for security leaders working for large enterprises that grow through acquisitions. Managing a large portfolio of acquired companies can be incredibly complex, especially when every individual company has its own security systems, tools, and policies to take into account. Security leaders generally don’t have the authority to consolidate complex systems on their own. However, you can reduce complexity and simplify security controls throughout the environment in several key ways: Reduce the organization’s dependence on legacy systems. End-of-life systems that no longer receive maintenance and support should be replaced with modern equivalents quickly. Group assets, users, and systems together. Security groups should be assigned on the basis of least privileged access, so that every user only has the minimum permissions necessary to achieve their tasks. Centralize access control management. Ad-hoc access control management quickly leads to unknown vulnerabilities and weaknesses popping up unannounced. Implement a robust identity access management system so you can create identity-based policies for managing user access. 3. Perform Continuous Vulnerability Monitoring Your organization’s attack surface is constantly changing. New threats are emerging, old ones are getting patched, and your IT environment is supporting new users and assets on a daily basis. Being able to continuously monitor these changes is one of the most important aspects of Zero Trust architecture . The tools you use to support attack surface management should also generate alerts when assets get exposed to known risks. They should allow you to confirm the remediation of detected risks, and provide ample information about the risks they uncover. Some of the things you can do to make this happen include: Investing in a continuous vulnerability monitoring solution. Vulnerability scans are useful for finding out where your organization stands at any given moment. Scheduling these scans to occur at regular intervals allows you to build a standardized process for vulnerability monitoring and remediation. Building a transparent network designed for visibility. Your network should not obscure important security details from you. Unfortunately, this is what many third-party security tools and services achieve. Make sure both you and your third-party security partners are invested in building observability into every aspect of your network. Prioritize security expenditure based on risk. Once you can observe the way users, data, and assets interact on the network, you can begin prioritizing security initiatives based on their business impact. This allows you to focus on high-risk tasks first. 4. Use Network Segmentation to Your Advantage Network segmentation is critical to the Zero Trust framework. When your organization’s different subnetworks are separated from one another with strictly protected boundaries, it’s much harder for attackers to travel laterally through the network. Limiting access between parts of the network helps streamline security processes while reducing risk. There are several ways you can segment your network. Most organizations already perform some degree of segmentation by encrypting highly classified data. Others enforce network segmentation principles when differentiating between production and live development environments. But in order for organizations to truly benefit from network segmentation, security leaders must carefully define boundaries between every segment and enforce authentication policies designed for each boundary. This requires in-depth knowledge of the business roles and functions of the users who access those segments, and the ability to configure security tools to inspect and enforce access control rules. For example, any firewall can block traffic between two network segments. A next-generation firewall can conduct identity-based inspection that allows traffic from authorized users through – even if they are using mobile devices the firewall has never seen before. 5. Implement a Strong Encryption Policy Encryption policies are an important element of many different compliance frameworks . HIPAA, PCI-DSS, and many other regulatory frameworks specify particular encryption policies that organizations must follow to be compliant. These standards are based on the latest research in cryptographic security and threat intelligence reports that outline hackers’ capabilities. Even if your organization is not actively seeking regulatory compliance, you should use these frameworks as a starting point for building your own encryption policy. Your organization’s risk profile is largely the same whether you seek regulatory certification or not – and accidentally deploying outdated encryption policies can introduce preventable vulnerabilities into an otherwise strong security posture. Your organization’s encryption policy should detail every type of data that should be encrypted and the cipher suite you’ll use to encrypt that data. This will necessarily include critical assets like customer financial data and employee payroll records, but it also includes relatively low-impact assets like public Wi-Fi connections at retail stores. In each case, you must implement a modern cipher suite that meets your organization’s security needs and replace legacy devices that do not support the latest encryption algorithms. This is particularly important in retail and office settings, where hardware routers, printers, and other devices may no longer support secure encryption. 6. Invest in Employee Training To truly build security resilience into any company culture, it’s critical to explain why these policies must be followed, and what kinds of threats they address. One of the best ways to administer standardized security compliance training is by leveraging a corporate learning platform across the organization, so that employees can actually internalize these security policies through scenario based training courses. It’s especially valuable in organizations suffering from consistent shadow IT usage. When employees understand the security vulnerabilities that shadow IT introduces into the environment, they’re far less likely to ignore security policies for the sake of convenience. Security simulations and awareness campaigns can have a significant impact on training initiatives. When employees know how to identify threat actors at work, they are much less likely to fall victim to them. However, actually achieving meaningful improvement may require devoting a great deal of time and energy into phishing simulation exercises over time – not everyone is going to get it right in the first month or two. These initiatives can also provide clear insight and data on how prepared your employees are overall. This data can make a valuable contribution to your attack surface reduction campaign. You may be able to pinpoint departments – or even individual users – who need additional resources and support to improve their resilience against phishing and social engineering attacks. Successfully managing this aspect of your risk assessment strategy will make it much harder for hackers to gain control of privileged administrative accounts. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Building a Blueprint for a Successful Micro-segmentation Implementation

    Avishai Wool, CTO and co-founder of AlgoSec, looks at how organizations can implement and manage SDN-enabled micro-segmentation... Micro-segmentation Building a Blueprint for a Successful Micro-segmentation Implementation Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/22/20 Published Avishai Wool, CTO and co-founder of AlgoSec, looks at how organizations can implement and manage SDN-enabled micro-segmentation strategies Micro-segmentation is regarded as one of the most effective methods to reduce an organization’s attack surface, and a lack of it has often been cited as a contributing factor in some of the largest data breaches and ransomware attacks. One of the key reasons why enterprises have been slow to embrace it is because it can be complex and costly to implement – especially in traditional on-premise networks and data centers. In these, creating internal zones usually means installing extra firewalls, changing routing, and even adding cabling to police the traffic flows between zones, and having to manage the additional filtering policies manually. However, as many organizations are moving to virtualized data centers using Software-Defined Networking (SDN), some of these cost and complexity barriers are lifted. In SDN-based data centers the networking fabric has built-in filtering capabilities, making internal network segmentation much more accessible without having to add new hardware. SDN’s flexibility enables advanced, granular zoning: In principle, data center networks can be divided into hundreds, or even thousands, of microsegments. This offers levels of security that would previously have been impossible – or at least prohibitively expensive – to implement in traditional data centers. However, capitalizing on the potential of micro-segmentation in virtualized data centers does not eliminate all the challenges. It still requires the organization to deploy a filtering policy that the micro-segmented fabric will enforce, and writing this a policy is the first, and largest, hurdle that must be cleared. The requirements from a micro-segmentation policy A correct micro-segmentation filtering policy has three high-level requirements: It allows all business traffic – The last thing you want is to write a micro-segmented policy and have it block necessary business communication, causing applications to stop functioning. It allows nothing else – By default, all other traffic should be denied. It is future-proof – ‘More of the same’ changes in the network environment shouldn’t break rules. If you write your policies too narrowly, when something in the network changes, such as a new server or application, something will stop working. Write with scalability in mind. A micro-segmentation blueprint Now that you know what you are aiming for, how can you actually achieve it? First of all, your organization needs to know what your traffic flows are – what is the traffic that should be allowed. To get this information, you can perform a ‘discovery’ process. Only once you have this information, can you then establish where to place the borders between the microsegments in the data center and how to devise and manage the security policies for each of the segments in their network environment. I welcome you to download AlgoSec’s new eBook , where we explain in detail how to implement and manage micro-segmentation. AlgoSec Enables Micro-segmentation The AlgoSec Security Management Suite (ASMS) employs the power of automation to make it easy to define and enforce your micro-segmentation strategy inside the data center, ensure that it does not block critical business services, and meet compliance requirements. AlgoSec supports micro-segmentation by: Providing application discovery based on netflow information Identifying unprotected network flows that do not cross any firewall and are not filtered for an application Automatically identifying changes that will violate the micro-segmentation strategy Automatically implementing network security changes Automatically validating changes The bottom line is that implementing an effective network micro-segmentation strategy is now possible. It requires careful planning and implementation, but when carried out following a proper blueprint and with the automation capabilities of the AlgoSec Security Management Suite, it provides you with stronger security without sacrificing any business agility. Find out more about how micro-segmentation can help you boost your security posture, or request your personal demo . Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Emerging Tech Trends – 2023 Perspective

    1. Application-centric security Many of today’s security discussions focus on compromised credentials, misconfigurations, and malicious... Cloud Security Emerging Tech Trends – 2023 Perspective Ava Chawla 2 min read Ava Chawla Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/24/22 Published 1. Application-centric security Many of today’s security discussions focus on compromised credentials, misconfigurations, and malicious or unintentional misuse of resources. Disruptive technologies from Cloud to smart devices and connected networks mean the attack surface is growing. Security conversations are increasingly expanding to include business-critical applications and their dependencies. Organizations are beginning to recognize that a failure to take an application-centric approach to security increases the potential for unidentified, unmitigated security gaps and vulnerabilities. 2. Portable, agile, API & automation driven enterprise architectures Successful business innovation requires the ability to efficiently deploy new applications and make changes without impacting downstream elements. This means fast deployments, optimized use of IT resources, and application segmentation with modular components that can seamlessly communicate. Container security is here to stay Containerization is a popular solution that reduces costs because containers are lightweight and contain no OS. Let's compare this to VMs, like containers, VMs allow the creation of isolated workspaces on a single machine. The OS is part of the VM and will communicate with the host through a hypervisor. With containers, the orchestration tool manages all the communication between the host OS and each container. Aside from the portability benefit of containers, they are also easily managed via APIs, which is ideal for modular, automation-driven enterprise architectures. The growth of containerized applications and automation will continue. Lift and Shift left approach will thrive Many organizations have started digital transformation journeys that include lift and shift migrations to the Cloud. A lift and shift migration enables organizations to move quickly, however, the full benefits of cloud are not realized. Optimized cloud architectures have cloud automation mechanisms deployed such as serverless (i.e – AWS Lamda), auto-scaling, and infrastructure as code (IaC) (i.e – AWS Cloud Formation) services. Enterprises with lift and shift deployments will increasingly prioritize a re-platform and/or modernization of their cloud architectures with a focus on automation. Terraform for IaC is the next step forward With hybrid cloud estates becoming increasingly common, Terraform-based IaC templates will increasingly become the framework of choice for managing and provisioning IT resources through machine-readable definition files. This is because Terraform, is cloud-agnostic, supporting all three major cloud service providers and can be used for on-premises infrastructure enabling a homogenous IaC solution across multi-cloud and on-premises. 3. Smart Connectivity & Predictive Technologies The growth of connected devices and AI/ML has led to a trend toward predictive technologies. Predictive technologies go beyond isolated data analysis to enable intelligent decisions. At the heart of this are smart, connected devices working across networks whose combined data 1. enables intelligent data analytics and 2. provides the means to build the robust labeled data sets required for accurate ML (Machine Learning) algorithms. 4. Accelerated adoption of agentless, multi-cloud security solutions Over 98% of organizations have elements of cloud across their networks. These organizations need robust cloud security but have yet to understand what that means. Most organizations are early in implementing cloud security guardrails and are challenged by the following: Misunderstanding the CSP (Cloud Service Provider) shared responsibility model Lack of visibility across multi-cloud networks Missed cloud misconfigurations Takeaways Cloud security posture management platforms are the current go-to solution for attaining broad compliance and configuration visibility. Cloud-Native Application Protection Platforms (CNAPP) are in their infancy. CNAPP applies an integrated approach with workload protection and other elements. CNAPP will emerge as the next iteration of must have cloud security platforms. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

bottom of page