top of page

Search results

625 results found with an empty search

  • AlgoSec | How to fix misconfigured firewalls (and prevent firewall breaches)

    Firewall misconfigurations are one of the most common and preventable security issues that organizations face. Comprehensively managing... Firewall Change Management How to fix misconfigured firewalls (and prevent firewall breaches) Kyle Wickert 2 min read Kyle Wickert Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 8/9/23 Published Firewall misconfigurations are one of the most common and preventable security issues that organizations face. Comprehensively managing access control, addressing vulnerabilities, and detecting configuration mistakes under these conditions is not easy It’s especially challenging for organizations that use the default firewall rules provided by their vendor. Your firewall policies should reflect your organization’s unique cybersecurity risk profile. This requires some degree of customization, and intelligence into kinds of cyber attacks hackers use to target your organization. Understanding security misconfigurations and their impact on network security Security misconfigurations happen when elements of your security tech stack expose preventable vulnerabilities that hackers can exploit. These misconfigurations can take a variety of forms, putting a wide range of security tools and open ports at risk. Network firewall misconfigurations can have a wide-ranging impact on your organization’s overall security posture. Hackers that target vulnerable infrastructure pose a threat to the entire application stack. They may be able to gain access to network services, application servers, and virtual machines. Depending on the specific misconfiguration, they may be able to compromise hardware routers and endpoints as well. In organizations with complex firewall deployments, attackers may be able to exploit misconfigurations, bypass security policies, and escalate their own privileges to make arbitrary changes to firewall security. From this point, attackers can easily modify access control lists (ACLs) to specifically allow the malware they wish to run, compromising the first line of defense against data breaches. This is exactly why Gartner recommends implementing a centralized solution for firewall management . Centralized visibility and control is crucial for maintaining effective firewall configurations and updating them accordingly. Otherwise, ensuring compliance with security best practices like the principle of least privilege becomes difficult or impossible. Routing network traffic through complex cloud-native infrastructure securely requires deep visibility into firewall configuration status, effective authentication processes, and automation-friendly security solutions. How hackers exploit misconfigured firewalls Common misconfigurations include implementing overly permissive rules, disabling critical security features, and neglecting to protect open ports against unauthorized access. This leaves organizations vulnerable to Distributed Denial-of-Service (DDoS) attacks, remote control, and data breaches . Here are some of the ways cybercriminals can exploit misconfigured firewalls: 1. Taking advantage of permissions misconfigurations Overly permissive firewall rules are a common problem among organizations with complex cloud-enabled infrastructure. Often, the organization’s demand for productivity and connectivity take precedence over the need to protect sensitive data from unauthorized network traffic. Additionally, IT team members may misunderstand the cloud provider’s shared responsibility model and assume that the provider has already secured the data center from all potential threats. These situations are particularly risky when the organization is undergoing change. For example, many security professionals start with completely open permissions and tighten them as they learn more about the network’s needs. Obvious and highly visible permissions get secured first, while less visible parts of the security framework are deprioritized – or never addressed at all. Hackers can exploit this situation by focusing on less obvious access points first. Instead of sending malicious traffic to IP addresses associated with core business servers, they might infiltrate the network through an unsecured API, or look for an unpatched operating system somewhere in the network. 2. Exploiting disabled security features Many firewalls offer advanced security features to organizations willing to configure them. However, security teams are often strained for time and resources. They may already be flooded with a backlog of high-priority security alerts to address, making it challenging to spend extra time configuring advanced firewall policies or fine-tuning their security posture. Even organizations that can enable advanced features don’t always do it. Features like leak detection and port scan alerts can put additional strain on limited computing resources, impacting performance. Other features may generate false positives, which only add to the security workload. But many of these features offer clear benefits to organizations that use them. Sophisticated technologies like application and identity-based inspection allow organizations to prioritize firewall performance more efficiently throughout the network. If threat actors find out that advanced security features like these are disabled, they are free to deploy the attack techniques these features protect against. For example, in the case of identity-based inspection, a hacker may be able to impersonate an unidentified administrator-level account and gain access to sensitive security controls without additional authentication. 3. Scanning for unsecured open ports Hackers use specialized penetration testing tools to scan for open ports. Tools like Nmap, Unicornscan , and Angry IP Scanner can find open ports and determine the security controls that apply to them. If a hacker finds out that your ACLs neglect to cover a particular port, they will immediately look for ways to exploit that vulnerability and gain access to your network. These tools are the same network discovery tools that system administrators and network engineers use on a routine basis. Tools like Nmap allow IT professionals to run security audits on local and remote networks, identifying hosts responding to network requests, discovering operating system names and versions, and more. Threat actors can even determine what kind of apps are running and find the version number of those apps. They also allow threat actors to collect data on weak points in your organization’s security defenses. For example, they might identify a healthcare organization using an outdated app to store sensitive clinical trial data. From there, it’s easy to look up the latest patch data to find out what exploits the outdated app is vulnerable to. How to optimize firewall configuration Protecting your organization from firewall breaches demands paying close attention to the policies, patch versions, and additional features your firewall provider offers. Here are three steps security leaders can take to address misconfiguration risks and ensure a robust security posture against external threats: 1. Audit your firewall policies regularly This is especially important for organizations undergoing the transition to cloud-native infrastructure. It’s virtually guaranteed that certain rules and permissions will no longer be needed as the organization adjusts to this period of change over time. Make sure that your firewall rules are constantly updated to address these changes and adapt to them accordingly. Auditing should take place under a strict change management framework . Implement a change log and incorporate it into your firewall auditing workflow so that you can easily access information about historical configuration changes. This change log will provide security professionals with readymade data about who implemented configuration changes, what time those changes took place, and why they were made in the first place. This gives you at-a-glance coverage of historical firewall performance, which puts you one step closer to building a unified, centralized solution for handling firewall policies. 2. Update and patch firewall software frequently Like every element in your security tech stack, firewall software needs to be updated promptly when developers release new patches. This applies both to hardware firewalls operating on-premises and software firewalls working throughout your network. These patches address known vulnerabilities, and they are often the first line of defense against rapidly emerging threats. The sooner you can deploy software patches to your firewalls, the more robust your network security posture will be. These changes should also be noted in a change log. This provides valuable evidence for the strength of your security posture against known emerging threats. If hackers start testing your defenses by abusing known post-patch vulnerabilities, you will be prepared for them. 3. Implement an intrusion detection system (IDS) Firewalls form the foundation of good network security, and intrusion detection systems supplement their capabilities by providing an additional line of defense. Organizations with robust IDS capabilities are much harder to compromise without triggering alerts. IDS solutions passively monitor traffic for signs of potential threats. When they detect a threat, they generate an alert, allowing security operations personnel to investigate and respond. This adds additional layers of value to the basic function of the firewall – allowing or denying traffic based on ACLs and network security rules. Many next-generation firewalls include intrusion detection system capabilities as part of an integrated solutions. This simplifies security management considerably and reduces the number of different devices and technologies security teams must gain familiarity with. Pay attention to firewall limitations – and prepare for them Properly configured firewalls offer valuable security performance to organizations with complex network infrastructure. However, they can’t prevent every cyber attack and block every bit of malicious code. Security leaders should be aware of firewall limitations and deploy security measures that compensate appropriately. Even with properly configured firewalls, you’ll have to address some of the following issues: Zero-day attacks Firewalls may not block attacks that exploit new and undiscovered vulnerabilities. Since these are not previously known vulnerabilities, security teams have not yet had time to develop patches or fixes that address them. These types of attacks are generally able to bypass more firewall solutions. However, some next-generation firewalls do offer advanced features capable of addressing zero-day attacks. Identity-based inspection is one example of a firewall technology that can detect these attacks because it enforces security policies based on user identity rather than IP address. Sandboxes are another next-generation firewall technology capable of blocking zero-day attacks. However, no single technology can reliably block 100% of all zero-day attacks. Some solutions are better-equipped to handle these types of attacks than others, but it takes a robust multi-layered security posture to consistently protect against unknown threats. Timely incident response Firewall configuration plays an important role in incident response. Properly configured firewalls help provide visibility into your security posture in real-time, enabling security teams to create high-performance incident response playbooks. Custom playbooks ensure timely incident response by prioritizing the types of threats found in real-world firewall data. If your firewalls are misconfigured, your incident response playbooks may reflect a risk profile that doesn’t match with your real-world security posture. This can lead to security complications that reduce the effectiveness of incident response processes down the line. Planned outages when updating firewalls Updating firewalls is an important part of maintaining an optimal firewall configuration for your organization. However, the update process can be lengthy. At the same time, it usually requires scheduling an outage in advance, which will temporarily expose your organization to the threats your firewall normally protects against. In some cases, there may be compatibility issues with incoming version of the firewall software being updated. This may lengthen the amount of time that the organization has to endure a service outage, which complicates firewall security. This is one reason why many security leaders intentionally delay updating their firewalls. As with many other aspects of running and maintaining good security policies, effective change management is an important aspect of planning firewall updates. Security leaders should stagger their scheduled updates to avoid reducing risk exposure and provide the organization with meaningful security controls during the update process. Automate change management and avoid misconfigurations with algoSec AlgoSec helps organizations deploy security policy changes while maintaining accuracy and control over their security posture. Use automation to update firewall configuration policies, download new security patches, and validate results without spending additional time and energy on manual processes. AlgoSec’s Firewall Analyzer gives you the ability to discover and map business applications throughout your network. Find out how new security policies will impact traffic and perform detailed simulations of potential security scenarios with unlimited visibility. Schedule a demo to see AlgoSec in action for yourself. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Joint webinar with Microsoft Azure - Understanding Hybrid Network Security | AlgoSec

    Learn how Microsoft Azure and AlgoSec solutions help companies improve visibility and identify risk in large complex hybrid networking environments Webinars Joint webinar with Microsoft Azure - Understanding Hybrid Network Security Learn how Microsoft Azure and AlgoSec solutions help companies improve visibility and identify risk in large complex hybrid networking environments In this joint webinar with Microsoft, we discuss the challenges in these hybrid networks and how Microsoft Azure and AlgoSec are helping companies leverage cloud technologies to add more capacity and business applications without increasing their exposure to security risk. During the webinar you will hear Yuval Pery, the Product Manager for Azure Network Security at Microsoft, review and discuss the security features and options available with Microsoft Azure. We also have Yoav Yam-Karnibad, the Product Manager for Cloud Network Security at AlgoSec, show the integrations that exist today between AlgoSec and Microsoft Azure that help improve visibility and identify and prioritize risk in today’s hybrid environments. September 14, 2023 Yoav Yam-Karnibad Product Manager, Cloud Network Security at AlgoSec Yuval Pery Product Manager, Azure Network Security at Microsoft Relevant resources Firewall Rule Recertification with Application Connectivity Keep Reading AlgoSec Cloud for Microsoft Azure Keep Reading Firewall management services
Proactive network security Keep Reading Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec Horizon Platform Solution brief - AlgoSec

    AlgoSec Horizon Platform Solution brief Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | Resolving human error in application outages: strategies for success

    Application outages caused by human error can be a nightmare for businesses, leading to financial losses, customer dissatisfaction, and... Cyber Attacks & Incident Response Resolving human error in application outages: strategies for success Malynnda Littky-Porath 2 min read Malynnda Littky-Porath Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 3/18/24 Published Application outages caused by human error can be a nightmare for businesses, leading to financial losses, customer dissatisfaction, and reputational damage. While human error is inevitable, organizations can implement effective strategies to minimize its impact and resolve outages promptly. In this blog post, we will explore proven solutions for addressing human error in application outages, empowering businesses to enhance their operational resilience and deliver uninterrupted services to their customers. Organizations must emphasize training and education One of the most crucial steps in resolving human error in application outages is investing in comprehensive training and education for IT staff. By ensuring that employees have the necessary skills, knowledge, and understanding of the application environment, organizations can reduce the likelihood of errors occurring. Training should cover proper configuration management, system monitoring, troubleshooting techniques, and incident response protocols. Additionally, fostering a culture of continuous learning and improvement is essential. Encourage employees to stay up to date with the latest technologies, best practices, and industry trends through workshops, conferences, and online courses. Regular knowledge sharing sessions and cross-team collaborations can also help mitigate human errors by fostering a culture of accountability and knowledge transfer. It’s time to implement robust change management processes Implementing rigorous change management processes is vital for preventing human errors that lead to application outages. Establishing a standardized change management framework ensures that all modifications to the application environment go through a well-defined process, reducing the risk of inadvertent errors. The change management process should include proper documentation of proposed changes, a thorough impact analysis, and rigorous testing in non-production environments before deploying changes to the production environment. Additionally, maintaining a change log and conducting post-implementation reviews can provide valuable insights for identifying and rectifying any potential errors. Why automate and orchestrate operational tasks Human errors often occur due to repetitive, mundane tasks that are prone to oversight or mistakes. Automating and orchestrating operational tasks can significantly reduce human error in application outages. Organizations should leverage automation tools to streamline routine tasks such as provisioning, configuration management, and deployment processes. By removing the manual element, the risk of human error decreases, and the consistency and accuracy of these tasks improve. Furthermore, implementing orchestration tools allows for the coordination and synchronization of complex workflows involving multiple teams and systems. This reduces the likelihood of miscommunication and enhances collaboration, minimizing errors caused by lack of coordination. Establish effective monitoring and alerting mechanisms Proactive monitoring and timely alerts are crucial for identifying potential issues and resolving them before they escalate into outages. Implementing robust monitoring systems that capture key performance indicators, system metrics, and application logs enables IT teams to quickly identify anomalies and take corrective action. Additionally, setting up alerts and notifications for critical events ensures that the appropriate personnel are notified promptly, allowing for rapid response and resolution. Leveraging artificial intelligence and machine learning capabilities can enhance monitoring by detecting patterns and anomalies that human operators might miss. Human errors will always be a factor in application outages, but by implementing effective strategies, organizations can minimize their impact and resolve incidents promptly. Investing in comprehensive training, robust change management processes, automation and orchestration, and proactive monitoring can significantly reduce the likelihood of human error-related outages. By prioritizing these solutions and fostering a culture of continuous improvement, businesses can enhance their operational resilience, protect their reputation, and deliver uninterrupted services to their customers. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • The Case and Criteria for Application-Centric Security Policy Management - AlgoSec

    The Case and Criteria for Application-Centric Security Policy Management Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec ISO/IEC 27001: 2022 Certificate - AlgoSec

    AlgoSec ISO/IEC 27001: 2022 Certificate Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • The Network Security Policy Management Lifecycle - AlgoSec

    The Network Security Policy Management Lifecycle Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | How To Prevent Firewall Breaches (The 2024 Guide)

    Properly configured firewalls are vital in any comprehensive cybersecurity strategy. However, even the most robust configurations can be... Uncategorized How To Prevent Firewall Breaches (The 2024 Guide) Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/11/24 Published Properly configured firewalls are vital in any comprehensive cybersecurity strategy. However, even the most robust configurations can be vulnerable to exploitation by attackers. No single security measure can offer absolute protection against all cyber threats and data security risks . To mitigate these risks, it’s crucial to understand how cybercriminals exploit firewall vulnerabilities. The more you know about their tactics, techniques, and procedures, the better-equipped you are to implement security policies that successfully block unauthorized access to network assets. In this guide, you’ll understand the common cyber threats that target enterprise firewall systems with the goal of helping you understand how attackers exploit misconfigurations and human vulnerabilities. Use this information to protect your network from a firewall breach. Understanding 6 Tactics Cybercriminals Use to Breach Firewalls 1. DNS Leaks Your firewall’s primary use is making sure unauthorized users do not gain access to your private network and the sensitive information it contains. But firewall rules can go both ways – preventing sensitive data from leaving the network is just as important. If enterprise security teams neglect to configure their firewalls to inspect outgoing traffic, cybercriminals can intercept this traffic and use it to find gaps in your security systems. DNS traffic is particularly susceptible to this approach because it shows a list of websites users on your network regularly visit. A hacker could use this information to create a spoofed version of a frequently visited website. For example, they might notice your organization’s employees visit a third-party website to attend training webinars. Registering a fake version of the training website and collecting employee login credentials would be simple. If your firewall doesn’t inspect DNS data and confirm connections to new IP addresses, you may never know. DNS leaks may also reveal the IP addresses and endpoint metadata of the device used to make an outgoing connection. This would give cybercriminals the ability to see what kind of hardware your organization’s employees use to connect to external websites. With that information in hand, impersonating managed service providers or other third-party partners is easy. Some DNS leaks even contain timestamp data, telling attackers exactly when users requested access to external web assets. How to protect yourself against DNS leaks Proper firewall configuration is key to preventing DNS-related security incidents. Your organization’s firewalls should provide observability and access control to both incoming and outgoing traffic. Connections to servers known for hosting malware and cybercrime assets should be blocked entirely. Connections to servers without a known reputation should be monitored closely. In a Zero Trust environment , even connections to known servers should benefit from scrutiny using an identity-based security framework. Don’t forget that apps can connect to external resources, too. Consider deploying web application firewalls configured to prevent DNS leaks when connecting to third-party assets and servers. You may also wish to update your security policy to require employees to use VPNs when connecting to external resources. An encrypted VPN connection can prevent DNS information from leaking, making it much harder for cybercriminals to conduct reconnaissance on potential targets using DNS data. 2. Encrypted Injection Attacks Older, simpler firewalls analyze traffic by looking at different kinds of data packet metadata. This provides clear evidence of certain denial-of-service attacks, clear violations of network security policy , and some forms of malware and ransomware . They do not conduct deep packet inspection to identify the kind of content passing through the firewall. This provides cybercriminals with an easy way to bypass firewall rules and intrusion prevention systems – encryption . If malicious content is encrypted before it hits the firewall, it may go unnoticed by simple firewall rules. Only next-generation firewalls capable of handling encrypted data packets can determine whether this kind of traffic is secure or not. Cybercriminals often deliver encrypted injection attacks through email. Phishing emails may trick users into clicking on a malicious link that injects encrypted code into the endpoint device. The script won’t decode and run until after it passes the data security threshold posed by the firewall. After that, it is free to search for personal data, credit card information, and more. Many of these attacks will also bypass antivirus controls that don’t know how to handle encrypted data. Task automation solutions like Windows PowerShell are also susceptible to these kinds of attacks. Even sophisticated detection-based security solutions may fail to recognize encrypted injection attacks if they don’t have the keys necessary to decrypt incoming data. How to protect yourself against encrypted injection attacks Deep packet inspection is one of the most valuable features next-generation firewalls provide to security teams. Industry-leading firewall vendors equip their products with the ability to decrypt and inspect traffic. This allows the firewall to prevent malicious content from entering the network through encrypted traffic, and it can also prevent sensitive encrypted data – like login credentials – from leaving the network. These capabilities are unique to next-generation firewalls and can’t be easily replaced with other solutions. Manufacturers and developers have to equip their firewalls with public-key cryptography capabilities and obtain data from certificate authorities in order to inspect encrypted traffic and do this. 3. Compromised Public Wi-Fi Public Wi-Fi networks are a well-known security threat for individuals and organizations alike. Anyone who logs into a password-protected account on public Wi-Fi at an airport or coffee shop runs the risk of sending their authentication information directly to hackers. Compromised public Wi-Fi also presents a lesser-known threat to security teams at enterprise organizations – it may help hackers breach firewalls. If a remote employee logs into a business account or other asset from a compromised public Wi-Fi connection, hackers can see all the data transmitted through that connection. This may give them the ability to steal account login details or spoof endpoint devices and defeat multi-factor authentication. Even password-protected private Wi-Fi connections can be abused in this way. Some Wi-Fi networks still use outdated WEP and WPA security protocols that have well-known vulnerabilities. Exploiting these weaknesses to take control of a WEP or WPA-protected network is trivial for hackers. The newer WPA2 and WPA3 standards are much more resilient against these kinds of attacks. While public Wi-Fi dangers usually bring remote workers and third-party service vendors to mind, on-premises networks are just as susceptible. Nothing prevents a hacker from gaining access to public Wi-Fi networks in retail stores, receptions, or other areas frequented by customers and employees. How to protect yourself against compromised public Wi-Fi attacks First, you must enforce security policies that only allow Wi-Fi traffic secured by WPA2 and WPA3 protocols. Hardware Wi-Fi routers that do not support these protocols must be replaced. This grants a minimum level of security to protected Wi-Fi networks. Next, all remote connections made over public Wi-Fi networks must be made using a secure VPN. This will encrypt the data that the public Wi-Fi router handles, making it impossible for a hacker to intercept without gaining access to the VPN’s secret decryption key. This doesn’t guarantee your network will be safe from attacks, but it improves your security posture considerably. 4. IoT Infrastructure Attacks Smartwatches, voice-operated speakers, and many automated office products make up the Internet of Things (IoT) segment of your network. Your organization may be using cloud-enriched access control systems, cost-efficient smart heating systems, and much more. Any Wi-Fi-enabled hardware capable of automation can safely be included in this category. However, these devices often fly under the radar of security team’s detection tools, which often focus on user traffic. If hackers compromise one of these devices, they may be able to move laterally through the network until they arrive at a segment that handles sensitive information. This process can take time, which is why many incident response teams do not consider suspicious IoT traffic to be a high-severity issue. IoT endpoints themselves rarely process sensitive data on their own, so it’s easy to overlook potential vulnerabilities and even ignore active attacks as long as the organization’s mission-critical assets aren’t impacted. However, hackers can expand their control over IoT devices and transform them into botnets capable of running denial-of-service attacks. These distributed denial-of-service (DDoS) attacks are much larger and more dangerous, and they are growing in popularity among cybercriminals. Botnet traffic associated with DDoS attacks on IoT networks has increased five-fold over the past year , showing just how promising it is for hackers. How to protect yourself against IoT infrastructure attacks Proper network segmentation is vital for preventing IoT infrastructure attacks . Your organization’s IoT devices should be secured on a network segment that is isolated from the rest of the network. If attackers do compromise the entire network, you should be protected from the risk of losing sensitive data from critical business assets. Ideally, this protection will be enforced with a strong set of firewalls managing the connection between your IoT subnetwork and the rest of your network. You may need to create custom rules that take your unique security risk profile and fleet of internet-connected devices into account. There are very few situations in which one-size-fits-all rulemaking works, and this is not one of them. All IoT devices – no matter how small or insignificant – should be protected by your firewall and other cybersecurity solutions . Never let these devices connect directly to the Internet through an unsecured channel. If they do, they provide attackers with a clear path to circumvent your firewalls and gain access to the rest of your network with ease. 5. Social Engineering and Phishing Social engineering attacks refer to a broad range of deceptive practices used by hackers to gain access to victims’ assets. What makes this approach special is that it does not necessarily depend on technical expertise. Instead of trying to hack your systems, cybercriminals are trying to hack your employees and company policies to carry out their attacks. Email phishing is one of the most common examples. In a typical phishing attack , hackers may spoof an email server to make it look like they are sending emails from a high-level executive in the company you work for. They can then impersonate this executive and demand junior accountants pay fictitious invoices or send sensitive customer data to email accounts controlled by threat actors. Other forms of social engineering can use your organization’s tech support line against itself. Attackers may pretend to represent large customer accounts and will leverage this ruse to gain information about how your company works. They may impersonate a third-party vendor and request confidential information that the vendor would normally have access to. These attacks span the range from simple trickery to elaborate confidence scams. Protecting against them can be incredibly challenging, and your firewall capabilities can make a significant difference in your overall state of readiness. How to protect yourself against social engineering attacks Employee training is the top priority for protecting against social engineering attacks . When employees understand the company’s operating procedures and security policies, it’s much harder for social engineers to trick them. Ideally, training should also include in-depth examples of how phishing attacks work, what they look like, and what steps employees should take when contacted by people they don’t trust. 6. Sandbox Exploits Many organizations use sandbox solutions to prevent file-based malware attacks. Sandboxes work by taking suspicious files and email attachments and opening them in a secure virtual environment before releasing them to users. The sandbox solution will observe how the file behaves and quarantine any file that shows malicious activity. In theory, this provides a powerful layer of defense against file-based attacks. But in practice, cybercriminals are well aware of how to bypass these solutions. For example, many sandbox solutions can’t open files over a certain size. Hackers who attach malicious code to large files can easily get through. Additionally, many forms of malware do not start executing malicious tasks the second they are activated. This delay can provide just enough of a buffer to get through a sandbox system. Some sophisticated forms of malware can even detect when they are being run in a sandbox environment – and will play the part of an innocent program until they are let loose inside the network. How to protect yourself against sandbox exploits Many next-generation firewalls include cloud-enabled sandboxing capable of running programs of arbitrary size for a potentially unlimited amount of time. More sophisticated sandbox solutions go to great lengths to mimic the system specifications of an actual endpoint so malware won’t know it is being run in a virtual environment. Organizations may also be able to overcome the limitations of the sandbox approach using Content Disarm and Reconstruction (CDR) techniques. This approach keeps potentially malicious files off the network entirely and only allows a reconstructed version of the file to enter the network. Since the new file is constructed from scratch, it will not contain any malware that may have been attached to the original file. Prevent firewall breaches with AlgoSec Managing firewalls manually can be overwhelming and time-consuming – especially when dealing with multiple firewall solutions. With the help of a firewall management solution , you easily configure firewall rules and manage configurations from a single dashboard. AlgoSec’s powerful firewall management solution integrates with your firewalls to deliver unified firewall policy management from a single location, thus streamlining the entire process. With AlgoSec, you can maintain clear visibility of your firewall ruleset, automate the management process, assess risk & optimize rulesets, streamline audit preparation & ensure compliance, and use APIs to access many features through web services. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Micro-segmentation From strategy to execution - AlgoSec

    Micro-segmentation From strategy to execution Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Securing & managing hybrid network security - AlgoSec

    Securing & managing hybrid network security Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Algosec Cloud Enterprise (ACE) - AlgoSec

    Algosec Cloud Enterprise (ACE) Case Study Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

bottom of page