top of page

Search results

609 results found with an empty search

  • AlgoSec | Navigating the Cybersecurity Horizon in 2024

    The persistence of sophisticated ransomware In 2023, organizations faced a surge in ransomware attacks, prompting a reevaluation of... Network Segmentation Navigating the Cybersecurity Horizon in 2024 Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/17/23 Published The persistence of sophisticated ransomware In 2023, organizations faced a surge in ransomware attacks, prompting a reevaluation of cybersecurity readiness. The focus on high-value assets and critical infrastructure indicated an escalating threat landscape, demanding stronger preemptive measures. This trend is expected to continue in 2024 as cybercriminals exploit vulnerabilities. Beyond relying on technology alone, organizations must adopt strategies like Zero Trust and Micro-segmentation for comprehensive preparedness, fortifying data security. A resolute and practical response is crucial to safeguard critical assets in the evolving cybersecurity landscape. DevSecOps Integration DevSecOps is set to become a cornerstone in software development, integrating security practices proactively. As Infrastructure as a Service (IaaS) popularity rises, customizing security settings becomes challenging, necessitating a shift from network perimeter reliance. Anticipating an “Always-on Security” approach like Infrastructure as Code (IaC), companies can implement policy-based guardrails in the CI/CD pipeline. If risks violating the guardrails are identified, automation should halt for human review. Cloud-Native Application Protection Platforms (CNAPP): The CNAPP market has advanced from basic Cloud Security Posture Management (CSPM) to include varied vulnerability and malware scans, along with crucial behavioral analytics for cloud assets like containers. However, few vendors emphasize deep analysis of Infrastructure as a Service (IaaS) networking controls in risk and compliance reporting. A more complete CNAPP platform should also provide comprehensive analytics of cloud applications’ connectivity exposure. Application-centric approach to network security will supersede basic NSPM Prepare for the shift from NSPM to an application-centric security approach, driven by advanced technologies, to accelerate in 2024. Organizations, grappling with downsizing and staff shortages, will strategically adopt this holistic approach to improve efficiency in the security operations team. Emphasizing knowledge retention and automated change processes will become crucial to maintain security with agility. AI-based enhancements to security processes Generative AI, as heralded by Chat-GPT and its ilk, has made great strides in 2023, and has demonstrated that the technology has a lot of potential. I think that in 2024 we will see many more use cases in which this potential goes from simply being “cool” to a more mature technology that is brought to market to bring real value to owners of security processes. Any use case that involves analyzing, summarizing, or generalizing text, can potentially benefit from a generative AI assist. The trick will be to do so in ways that save human time, without introducing factual hallucinations. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | The Application Migration Checklist

    All organizations eventually inherit outdated technology infrastructure. As new technology becomes available, old apps and services... Firewall Change Management The Application Migration Checklist Asher Benbenisty 2 min read Asher Benbenisty Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 10/25/23 Published All organizations eventually inherit outdated technology infrastructure. As new technology becomes available, old apps and services become increasingly expensive to maintain. That expense can come in a variety of forms: Decreased productivity compared to competitors using more modern IT solutions. Greater difficulty scaling IT asset deployments and managing the device life cycle . Security and downtime risks coming from new vulnerabilities and emerging threats. Cloud computing is one of the most significant developments of the past decade. Organizations are increasingly moving their legacy IT assets to new environments hosted on cloud services like Amazon Web Services or Microsoft Azure. Cloud migration projects enable organizations to dramatically improve productivity, scalability, and security by transforming on-premises applications to cloud-hosted solutions. However, cloud migration projects are among the most complex undertakings an organization can attempt. Some reports state that nine out of ten migration projects experience failure or disruption at some point, and only one out of four meet their proposed deadlines. The better prepared you are for your application migration project , the more likely it is to succeed. Keep the following migration checklist handy while pursuing this kind of initiative at your company. Step 1: Assessing Your Applications The more you know about your legacy applications and their characteristics, the more comprehensive you can be with pre-migration planning. Start by identifying the legacy applications that you want to move to the cloud. Pay close attention to the dependencies that your legacy applications have. You will need to ensure the availability of those resources in an IT environment that is very different from the typical on-premises data center. You may need to configure cloud-hosted resources to meet specific needs that are unique to your organization and its network architecture. Evaluate the criticality of each legacy application you plan on migrating to the cloud. You will have to prioritize certain applications over others, minimizing disruption while ensuring the cloud-hosted infrastructure can support the workload you are moving to. There is no one-size-fits-all solution to application migration. The inventory assessment may bring new information to light and force you to change your initial approach. It’s best that you make these accommodations now rather than halfway through the application migration project. Step 2: Choosing the Right Migration Strategy Once you know what applications you want to move to the cloud and what additional dependencies must be addressed for them to work properly, you’re ready to select a migration strategy. These are generalized models that indicate how you’ll transition on-premises applications to cloud-hosted ones in the context of your specific IT environment. Some of the options you should gain familiarity with include: Lift and Shift (Rehosting). This option enables you to automate the migration process using tools like CloudEndure Migration, AWS VM Import/Export, and others. The lift and shift model is well-suited to organizations that need to migrate compatible large-scale enterprise applications without too many additional dependencies, or organizations that are new to the cloud. Replatforming. This is a modified version of the lift and shift model. Essentially, it introduces an additional step where you change the configuration of legacy apps to make them better-suited to the cloud environment. By adding a modernization phase to the process, you can leverage more of the cloud’s unique benefits and migrate more complex apps. Refactoring/Re-architecting. This strategy involves rewriting applications from scratch to make them cloud-native. This allows you to reap the full benefits of cloud technology. Your new applications will be scalable, efficient, and agile to the maximum degree possible. However, it’s a time-consuming, resource-intensive project that introduces significant business risk into the equation. Repurchasing. This is where the organization implements a fully mature cloud architecture as a managed service. It typically relies on a vendor offering cloud migration through the software-as-a-service (SaaS) model. You will need to pay licensing fees, but the technical details of the migration process will largely be the vendor’s responsibility. This is an easy way to add cloud functionality to existing business processes, but it also comes with the risk of vendor lock-in. Step 3: Building Your Migration Team The success of your project relies on creating and leading a migration team that can respond to the needs of the project at every step. There will be obstacles and unexpected issues along the way – a high-quality team with great leadership is crucial for handling those problems when they arise. Before going into the specifics of assembling a great migration team, you’ll need to identify the key stakeholders who have an interest in seeing the project through. This is extremely important because those stakeholders will want to see their interests represented at the team level. If you neglect to represent a major stakeholder at the team level, you run the risk of having major, expensive project milestones rejected later on. Not all stakeholders will have the same level of involvement, and few will share the same values and goals. Managing them effectively means prioritizing the values and goals they represent, and choosing team members accordingly. Your migration team will consist of systems administrators, technical experts, and security practitioners, and include input from many other departments. You’ll need to formalize a system of communicating inside the core team and messaging stakeholders outside of it. You may also wish to involve end users as a distinct part of your migration team and dedicate time to addressing their concerns throughout the process. Keep team members’ stakeholder alignments and interests in mind when assigning responsibilities. For example, if a particular configuration step requires approval from the finance department, you’ll want to make sure that someone representing that department is involved from the beginning. Step 4: Creating a Migration Plan It’s crucial that every migration project follows a comprehensive plan informed by the needs of the organization itself. Organizations pursue cloud migration for many different reasons – your plan should address the problems you expect cloud-hosted technology to solve. This might mean focusing on reducing costs, enabling entry into a new market, or increasing business agility – or all three. You may have additional reasons for pursuing an application migration plan. This plan should also include data mapping . Choosing the right application performance metrics now will help make the decision-making process much easier down the line. Some of the data points that cloud migration specialists recommend capturing include: Duration highlights the value of employee labor-hours as they perform tasks throughout the process. Operational duration metrics can tell you how much time project managers spend planning the migration process, or whether one phase is taking much longer than another, and why. Disruption metrics can help identify user experience issues that become obstacles to onboarding and full adoption. Collecting data about the availability of critical services and the number of service tickets generated throughout the process can help you gauge the overall success of the initiative from the user’s perspective. Cost includes more than data transfer rates. Application migration initiatives also require creating dependency mappings, changing applications to make them cloud-native, and significant administrative costs. Up to 50% of your migration’s costs pay for labor , and you’ll want to keep close tabs on those costs as the process goes on. Infrastructure metrics like CPU usage, memory usage, network latency, and load balancing are best captured both before and after the project takes place. This will let you understand and communicate the value of the project in its entirety using straightforward comparisons. Application performance metrics like availability figures, error rates, time-outs and throughput will help you calculate the value of the migration process as a whole. This is another post-cloud migration metric that can provide useful before-and-after data. You will also want to establish a series of cloud service-level agreements (SLAs) that ensure a predictable minimum level of service is maintained. This is an important guarantee of the reliability and availability of the cloud-hosted resources you expect to use on a daily basis. Step 5: Mapping Dependencies Mapping dependencies completely and accurately is critical to the success of any migration project. If you don’t have all the elements in your software ecosystem identified correctly, you won’t be able to guarantee that your applications will work in the new environment. Application dependency mapping will help you pinpoint which resources your apps need and allow you to make those resources available. You’ll need to discover and assess every workload your organization undertakes and map out the resources and services it relies on. This process can be automated, which will help large-scale enterprises create accurate maps of complex interdependent processes. In most cases, the mapping process will reveal clusters of applications and services that need to be migrated together. You will have to identify the appropriate windows of opportunity for performing these migrations without disrupting the workloads they process. This often means managing data transfer and database migration tasks and carrying them out in a carefully orchestrated sequence. You may also discover connectivity and VPN requirements that need to be addressed early on. For example, you may need to establish protocols for private access and delegate responsibility for managing connections to someone on your team. Project stakeholders may have additional connectivity needs, like VPN functionality for securing remote connections. These should be reflected in the application dependency mapping process. Multi-cloud compatibility is another issue that will demand your attention at this stage. If your organization plans on using multiple cloud providers and configuring them to run workloads specific to their platform, you will need to make sure that the results of these processes are communicated and stored in compatible formats. Step 6: Selecting a Cloud Provider Once you fully understand the scope and requirements of your application migration project, you can begin comparing cloud providers. Amazon, Microsoft, and Google make up the majority of all public cloud deployments, and the vast majority of organizations start their search with one of these three. Amazon AW S has the largest market share, thanks to starting its cloud infrastructure business several years before its major competitors did. Amazon’s head start makes finding specialist talent easier, since more potential candidates will have familiarity with AWS than with Azure or Google Cloud. Many different vendors offer services through AWS, making it a good choice for cloud deployments that rely on multiple services and third-party subscriptions. Microsoft Azure has a longer history serving enterprise customers, even though its cloud computing division is smaller and younger than Amazon’s. Azure offers a relatively easy transition path that helps enterprise organizations migrate to the cloud without adding a large number of additional vendors to the process. This can help streamline complex cloud deployments, but also increases your reliance on Microsoft as your primary vendor. Google Cloud is the third runner-up in terms of market share. It continues to invest in cloud technologies and is responsible for a few major innovations in the space – like the Kubernetes container orchestration system. Google integrates well with third-party applications and provides a robust set of APIs for high-impact processes like translation and speech recognition. Your organization’s needs will dictate which of the major cloud providers offers the best value. Each provider has a different pricing model, which will impact how your organization arrives at a cost-effective solution. Cloud pricing varies based on customer specifications, usage, and SLAs, which means no single provider is necessarily “the cheapest” or “the most expensive” – it depends on the context. Additional cost considerations you’ll want to take into account include scalability and uptime guarantees. As your organization grows, you will need to expand its cloud infrastructure to accommodate more resource-intensive tasks. This will impact the cost of your cloud subscription in the future. Similarly, your vendor’s uptime guarantee can be a strong indicator of how invested it is in your success. Given all vendors work on the shared responsibility model, it may be prudent to consider an enterprise data backup solution for peace of mind. Step 7: Application Refactoring If you choose to invest time and resources into refactoring applications for the cloud, you’ll need to consider how this impacts the overall project. Modifying existing software to take advantage of cloud-based technologies can dramatically improve the efficiency of your tech stack, but it will involve significant risk and up-front costs. Some of the advantages of refactoring include: Reduced long-term costs. Developers refactor apps with a specific context in mind. The refactored app can be configured to accommodate the resource requirements of the new environment in a very specific manner. This boosts the overall return of investing in application refactoring in the long term and makes the deployment more scalable overall. Greater adaptability when requirements change . If your organization frequently adapts to changing business requirements, refactored applications may provide a flexible platform for accommodating unexpected changes. This makes refactoring attractive for businesses in highly regulated industries, or in scenarios with heightened uncertainty. Improved application resilience . Your cloud-native applications will be decoupled from their original infrastructure. This means that they can take full advantage of the benefits that cloud-hosted technology offers. Features like low-cost redundancy, high-availability, and security automation are much easier to implement with cloud-native apps. Some of the drawbacks you should be aware of include: Vendor lock-in risks . As your apps become cloud-native, they will naturally draw on cloud features that enhance their capabilities. They will end up tightly coupled to the cloud platform you use. You may reach a point where withdrawing those apps and migrating them to a different provider becomes infeasible, or impossible. Time and talent requirements . This process takes a great deal of time and specialist expertise. If your organization doesn’t have ample amounts of both, the process may end up taking too long and costing too much to be feasible. Errors and vulnerabilities . Refactoring involves making major changes to the way applications work. If errors work their way in at this stage, it can deeply impact the usability and security of the workload itself. Organizations can use cloud-based templates to address some of these risks, but it will take comprehensive visibility into how applications interact with cloud security policies to close every gap. Step 8: Data Migration There are many factors to take into consideration when moving data from legacy applications to cloud-native apps. Some of the things you’ll need to plan for include: Selecting the appropriate data transfer method . This depends on how much time you have available for completing the migration, and how well you plan for potential disruptions during the process. If you are moving significant amounts of data through the public internet, sidelining your regular internet connection may be unwise. Offline transfer doesn’t come with this risk, but it will include additional costs. Ensuring data center compatibility. Whether transferring data online or offline, compatibility issues can lead to complex problems and expensive downtime if not properly addressed. Your migration strategy should include a data migration testing strategy that ensures all of your data is properly formatted and ready to use the moment it is introduced to the new environment. Utilizing migration tools for smooth data transfer . The three major cloud providers all offer cloud migration tools with multiple tiers and services. You may need to use these tools to guarantee a smooth transfer experience, or rely on a third-party partner for this step in the process. Step 9: Configuring the Cloud Environment By the time your data arrives in its new environment, you will need to have virtual machines and resources set up to seamlessly take over your application workloads and processes. At the same time, you’ll need a comprehensive set of security policies enforced by firewall rules that address the risks unique to cloud-hosted infrastructure. As with many other steps in this checklist, you’ll want to carefully assess, plan, and test your virtual machine deployments before deploying them in a live production environment. Gather information about your source and target environment and document the workloads you wish to migrate. Set up a test environment you can use to make sure your new apps function as expected before clearing them for live production. Similarly, you may need to configure and change firewall rules frequently during the migration process. Make sure that your new deployments are secured with reliable, well-documented security policies. If you skip the documentation phase of building your firewall policy, you run the risk of introducing security vulnerabilities into the cloud environment, and it will be very difficult for you to identify and address them later on. You will also need to configure and deploy network interfaces that dictate where and when your cloud environment will interact with other networks, both inside and outside your organization. This is your chance to implement secure network segmentation that protects mission-critical assets from advanced and persistent cyberattacks. This is also the best time to implement disaster recovery mechanisms that you can rely on to provide business continuity even if mission-critical assets and apps experience unexpected downtime. Step 10: Automating Workflows Once your data and apps are fully deployed on secure cloud-hosted infrastructure, you can begin taking advantage of the suite of automation features your cloud provider offers. Depending on your choice of migration strategy, you may be able to automate repetitive tasks, streamline post-migration processes, or enhance the productivity of entire departments using sophisticated automation tools. In most cases, automating routine tasks will be your first priority. These automations are among the simplest to configure because they largely involve high-volume, low-impact tasks. Ideally, these tasks are also isolated from mission-critical decision-making processes. If you established a robust set of key performance indicators earlier on in the migration project, you can also automate post-migration processes that involve capturing and reporting these data points. Your apps will need to continue ingesting and processing data, making data validation another prime candidate for workflow automation. Cloud-native apps can ingest data from a wide range of sources, but they often need some form of validation and normalization to produce predictable results. Ongoing testing and refinement will help you make the most of your migration project moving forward. How AlgoSec Enables Secure Application Migration Visibility and Di scovery : AlgoSec provide s comprehensive visibility into your existing on-premises network environment. It automatically discovers all network devices, applications, and their dependencies. This visibility is crucial when planning a secure migration, ensuring no critical elements get overlooked in the process. Application Dependency Mapping : AlgoSec’s application dependency mapping capabilities allow you to understand how different applications and services interact within your network. This knowledge is vital during migration to avoid disrupting critical dependencies. Risk Assessment : AlgoSec assesses the security and compliance risks associated with your migration plan. It identifies potential vulnerabilities, misconfigurations, and compliance violations that could impact the security of the migrated applications. Security Policy Analysis : Before migrating, AlgoSec helps you analyze your existing security policies and rules. It ensures that security policies are consistent and effective in the new cloud or data center environment. Misconfigurations and unnecessary rules can be eliminated, reducing the attack surface. Automated Rule Optimiz ation : AlgoSec automates the o ptimization of security rules. It identifies redundant rules, suggests rule consolidations, and ensures that only necessary traffic is allowed, helping you maintain a secure environment during migration. Change Management : During the migration process, changes to security policies and firewall rules are often necessary. AlgoSec facilitates change management by providing a streamlined process for requesting, reviewing, and implementing rule changes. This ensures that security remains intact throughout the migration. Compliance and Governance : AlgoSec helps maintain compliance with industry regulations and security best practices. It generates compliance reports, ensures rule consistency, and enforces security policies, even in the new cloud or data center environment. Continuous Monitoring and Auditing : Post-migration, AlgoSec continues to monitor and audit your security policies and network traffic. It alerts you to any anomalies or security breaches, ensuring the ongoing security of your migrated applications. Integration with Cloud Platforms : AlgoSec integrates seamlessly with various cloud platforms such as AWS , Microsoft Azure , and Google Cloud . This ensures that security policies are consistently applied in both on-premises and cloud environments, enabling a secure hybrid or multi-cloud setup. Operational Efficiency : AlgoSec’s automation capabilities reduce manual tasks, improving operational efficiency. This is essential during the migration process, where time is often of the essence. Real-time Visibility and Control : AlgoSec provides real-time visibility and control over your security policies, allowing you to adapt quickly to changing migration requirements and security threats. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Network Security Threats & Solutions for Cybersecurity Leaders

    Modern organizations face a wide and constantly changing range of network security threats, and security leaders must constantly update... Network Security Network Security Threats & Solutions for Cybersecurity Leaders Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/11/24 Published Modern organizations face a wide and constantly changing range of network security threats, and security leaders must constantly update their security posture against them. As threat actors change their tactics, techniques, and procedures, exploit new vulnerabilities , and deploy new technologies to support their activities — it’s up to security teams to respond by equipping themselves with solutions that address the latest threats. The arms race between cybersecurity professionals and cybercriminals is ongoing. During the COVID-19 pandemic, high-profile ransomware attacks took the industry by storm. When enterprise security teams responded by implementing secure backup functionality and endpoint detection and response, cybercriminals shifted towards double extortion attacks. The cybercrime industry constantly invests in new capabilities to help hackers breach computer networks and gain access to sensitive data. Security professionals must familiarize themselves with the latest network security threats and deploy modern solutions that address them. What are the Biggest Network Security Threats? 1. Malware-based Cyberattacks Malware deserves a category of its own because so many high-profile attacks rely on malicious software to work. These include everything from the Colonial Pipeline Ransomware attack to historical events like Stuxnet . Broadly speaking, cyberattacks that rely on launching malicious software on computer systems are part of this category. There are many different types of malware-based cyberattacks, and they vary widely in scope and capability. Some examples include: Viruses. Malware that replicates itself by inserting its own code into other applications are called viruses. They can spread across devices and networks very quickly. Ransomware. This type of malware focuses on finding and encrypting critical data on the victim’s network and then demanding payment for the decryption key. Cybercriminals typically demand payment in the form of cryptocurrency, and have developed a sophisticated industrial ecosystem for conducting ransomware attacks. Spyware. This category includes malware variants designed to gather information on victims and send it to a third party without your consent. Sometimes cybercriminals do this as part of a more elaborate cyberattack. Other times it’s part of a corporate espionage plan. Some spyware variants collect sensitive information that cybercriminals value highly. Trojans. These are malicious applications disguised as legitimate applications. Hackers may hide malicious code inside legitimate software in order to trick users into becoming victims of the attack. Trojans are commonly hidden as an email attachment or free-to-download file that launches its malicious payload after being opened in the victim’s environment. Fileless Malware. This type of malware leverages legitimate tools native to the IT environment to launch an attack. This technique is also called “living off the land” because hackers can exploit applications and operating systems from inside, without having to download additional payloads and get them past firewalls. 2. Network-Based Attacks These are attacks that try to impact network assets or functionality, often through technical exploitations. Network-based attacks typically start at the edge of the network, where it sends and receives traffic to the public internet. Distributed Denial-of-Service (DDoS) Attacks. These attacks overwhelm network resources, leading to downtime and service unavailability, and in some cases, data loss . To launch DDoS attacks, cybercriminals must gain control over a large number of compromised devices and turn them into bots. Once thousands (or millions) of bots using unique IP addresses request server resources, the server breaks down and stops functioning. Man-in-the-Middle (MitM) Attacks: These attacks let cybercriminals eavesdrop on communications between two parties. In some cases, they can also alter the communications between both parties, allowing them to plan and execute more complex attacks. Many different types of man-in-the-middle attacks exist, including IP spoofing, DNS spoofing, SSL stripping, and others. 3. Social Engineering and Phishing These attacks are not necessarily technical exploits. They focus more on abusing the trust that human beings have in one another. Usually, they involve the attacker impersonating someone in order to convince the victim to give up sensitive data or grant access to a secure asset. Phishing Attacks. This is when hackers create fake messages telling victims to take some kind of action beneficial to the attacker. These deceptive messages can result in the theft of login credentials, credit card information, or more. Most major institutions are regularly impersonated by hackers running phishing scams, like the IRS . Social Engineering Attacks. These attacks use psychological manipulation to trick victims into divulging confidential information. A common example might be a hacker contacting a company posing as a third-party technology vendor, asking for access to a secure system, or impersonating the company CEO and demanding an employee pay a fictitious invoice. 4. Insider Threats and Unauthorized Access These network security threats are particularly dangerous because they are very difficult to catch. Most traditional security tools are not configured to detect malicious insiders, who generally have permission to access sensitive data and assets. Insider Threats. Employees, associates, and partners with access to sensitive data may represent severe security risks. If an authorized user decides to steal data and sell it to a hacker or competitor, you may not be able to detect their attack using traditional security tools. That’s what makes insider threats so dangerous, because they are often undetectable. Unauthorized Access. This includes a broad range of methods used to gain illegal access to networks or systems. The goal is usually to steal data or alter it in some way. Attackers may use credential-stuffing attacks to access sensitive networks, or they can try brute force methods that involve automatically testing millions of username and password combinations until they get the right one. This often works because people reuse passwords that are easy to remember. Solutions to Network Security Threats Each of the security threats listed above comes with a unique set of risks, and impacts organizations in a unique way. There is no one-size-fits-all solution to navigating these risks. Every organization has to develop a cybersecurity policy that meets its specific needs. However, the most secure organizations usually share the following characteristics. Fundamental Security Measures Well-configured Firewalls. Firewalls control incoming and outgoing network traffic based on security rules. These rules can deny unauthorized traffic attempting to connect with sensitive network assets and block sensitive information from traveling outside the network. In each case, robust configuration is key to making the most of your firewall deployment . Choosing a firewall security solution like AlgoSec can dramatically improve your defenses against complex network threats. Anti-malware and Antivirus Software. These solutions detect and remove malicious software throughout the network. They run continuously, adapting their automated scans to include the latest threat detection signatures so they can block malicious activity before it leads to business disruption. Since these tools typically rely on threat signatures, they cannot catch zero-day attacks that leverage unknown vulnerabilities. Advanced Protection Tools Intrusion Prevention Systems. These security tools monitor network traffic for behavior that suggests unauthorized activity. When they find evidence of cyberattacks and security breaches, they launch automated responses that block malicious activity and remove unauthorized users from the network. Network Segmentation. This is the process of dividing networks into smaller segments to control access and reduce the attack surface. Highly segmented networks are harder to compromise because hackers have to repeatedly pass authentication checks to move from one network zone to another. This increases the chance that they fail, or generate activity unusual enough to trigger an alert. Security and Information Event Management (SIEM) platforms. These solutions give security analysts complete visibility into network and application activity across the IT environment. They capture and analyze log data from firewalls, endpoint devices, and other assets and correlate them together so that security teams can quickly detect and respond to unauthorized activity, especially insider threats. Endpoint Detection and Response (EDR). These solutions provide real-time visibility into the activities of endpoint devices like laptops, desktops, and mobile phones. They monitor these devices for threat indicators and automatically respond to identified threats before they can reach the rest of the network. More advanced Extended Detection and Response (XDR) solutions draw additional context and data from third party security tools and provide in-depth automation . Authentication and Access Control Multi-Factor Authentication (MFA). This technology enhances security by requiring users to submit multiple forms of verification before accessing sensitive data. This makes it useful against phishing attacks, social engineering, and insider threats, because hackers need more than just a password to gain entry to secure networks. MFA also plays an important role in Zero Trust architecture. Strong Passwords and Access Policies. There is no replacement for strong password policies and securely controlling user access to sensitive data. Security teams should pay close attention to password policy compliance, making sure employees do not reuse passwords across accounts and avoid simple memory hacks like adding sequential numbers to existing passwords. Preventing Social Engineering and Phishing While SIEM platforms, MFA policies and strong passwords go a long way towards preventing social engineering and phishing attacks, there are a few additional security measures worth taking to reduce these risks: Security Awareness Training. Leverage a corporate training LMS to educate employees about phishing and social engineering tactics. Phishing simulation exercises can help teach employees how to distinguish phishing messages from legitimate ones, and pinpoint the users at highest risk of falling for a phishing scam. Email Filtering and Verification: Email security tools can identify and block phishing emails before they arrive in the inbox. They often rely on scanning the reputation of servers that send incoming emails, and can detect discrepancies in email metadata that suggest malicious intent. Even if these solutions generally can’t keep 100% of malicious emails out of the inbox, they significantly reduce email-related threat risks. Dealing with DDoS and MitM Attacks These technical exploits can lead to significant business disruption, especially when undertaken by large-scale threat actors with access to significant resources. Your firewall configuration and VPN policies will make the biggest difference here: DDoS Prevention Systems. Protect against distributed denial of service attacks by implementing third-party DDoS prevention solutions, deploying advanced firewall configurations, and using load balancers. Some next generation firewalls (NGFWs) can increase protection against DDoS attacks by acting as a handshake proxy and dropping connection requests that do not complete the TCP handshake process. VPNs and Encryption: VPNs provide secure communication channels that prevent MitM attacks and data eavesdropping. Encrypted traffic can only be intercepted by attackers who go through the extra step of obtaining the appropriate decryption key. This makes it much less likely they focus on your organization instead of less secure ones that are easier to target. Addressing Insider Threats Insider threats are a complex security issue that require deep, multi-layered solutions to address. This is especially true when malicious insiders are actually employees with legitimate user credentials and privileges. Behavioral Auditing and Monitoring: Regular assessments and monitoring of user activities and network traffic are vital for detecting insider threats . Security teams need to look beyond traditional security deployments and gain insight into user behaviors in order to catch authorized users doing suspicious things like escalating their privileges or accessing sensitive data they do not normally access. Zero Trust Security Model. Assume no user or device is trustworthy until verified. Multiple layers of verification between highly segmented networks — with multi-factor authentication steps at each layer — can make it much harder for insider threats to steal data and conduct cyberattacks. Implementing a Robust Security Strategy Directly addressing known threats should be just one part of your cybersecurity strategy. To fully protect your network and assets from unknown risks, you must also implement a strong security posture that can address risks associated with new and emerging cyber threats. Continual Assessment and Improvement The security threat landscape is constantly changing, and your security posture must adapt and change in response. It’s not always easy to determine exactly how your security posture should change, which is why forward-thinking security leaders periodically invest in vulnerability assessments designed to identify security vulnerabilities that may have been overlooked. Once you have a list of security weaknesses you need to address, you can begin the process of proactively addressing them by configuring your security tech stack and developing new incident response playbooks. These playbooks will help you establish a coordinated, standardized response to security incidents and data breaches before they occur. Integration of Security Tools Coordinating incident response plans isn’t easy when every tool in your tech stack has its own user interface and access control permissions. You may need to integrate your security tools into a single platform that allows security teams to address issues across your entire network from a single point of reference. This will help you isolate and address security issues on IoT devices and mobile devices without having to dedicate a particular team member exclusively to that responsibility. If a cyberattack that targets mobile apps occurs, your incident response plan won’t be limited by the bottleneck of having a single person with sufficient access to address it. Similarly, highly integrated security tools that leverage machine learning and automation can enhance the scalability of incident response and speed up incident response processes significantly. Certain incident response playbooks can be automated entirely, providing near-real-time protection against sophisticated threats and freeing your team to focus on higher-impact strategic initiatives. Developing and Enforcing Security Policies Developing and enforcing security policies is one of the high-impact strategic tasks your security team should dedicate a great deal of time and effort towards. Since the cybersecurity threat landscape is constantly changing, you must commit to adapting your policies in response to new and emerging threats quickly. That means developing a security policy framework that covers all aspects of network and data security. Similarly, you can pursue compliance with regulatory standards that ensure predictable outcomes from security incidents. Achieving compliance with standards like NIST, CMMC, PCI-DSS, and HIPPA can help you earn customers’ trust and open up new business opportunities. AlgoSec: Your Partner in Network Security Protecting against network threats requires continuous vigilance and the ability to adapt to fast-moving changes in the security landscape. Every level of your organization must be engaged in security awareness and empowered to report potential security incidents. Policy management and visibility platforms like AlgoSec can help you gain control over your security tool configurations. This enhances the value of continuous vigilance and improvement, and boosts the speed and accuracy of policy updates using automation. Consider making AlgoSec your preferred security policy automation and visibility platform. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Multi-Cloud Security Network Policy and Configuration Management | AlgoSec

    Manage multi-cloud security with effective policy and configuration strategies to ensure compliance, optimize performance, and protect your network infrastructure. Multi-Cloud Security Network Policy and Configuration Management ---- ------- Schedule a Demo Select a size ----- Get the latest insights from the experts Choose a better way to manage your network

  • Cloud network security: Challenges and best practices | AlgoSec

    Discover key insights on cloud network security, its benefits, challenges, and best practices for protecting your cloud environment effectively. Cloud network security: Challenges and best practices What is cloud network security? Cloud network security refers to the measures used to protect public, private, and hybrid cloud networks. These measures include technology, services, processes, policies, and controls and can defend against data exposure or misuse. Why is cloud network security important? Cloud network security is important because of the wide range of threats to data and other cloud resources. Some of the most common include data breaches and exposure, malware, phishing, compromised APIs, distributed denial-of-service (DDoS), and DNS attacks, among others. In addition to defending against threat actors, cloud networks must also comply with an ever-growing number of regulations. A cloud-native security tool can provide the protection, incident response, and compliance that organizations need. Cloud security vs. network security Network security is a type of cloud security. If used in a hybrid system, it can rely on physical barriers and protections, whereas cloud security must exclusively use virtual solutions. In cloud computing, several organizations may share resources through infrastructure-as-a-service platforms like AWS EC2. Distributed data centers mean physical cybersecurity measures, like firewalls, must be replaced with virtual projections. There are three categories of cloud security: public, private, and hybrid cloud environments. Each offers its own set of challenges, which only increase in complexity for organizations with a multi-cloud environment. Schedule a Demo How does cloud network security work? Cloud network security routes traffic using software-defined networking. These protections are different from on-premise firewall systems and are virtualized and live in the cloud. The most secure platforms are built on a zero-trust security model, requiring authentication and verification for every connection. This helps protect cloud resources and defend them throughout the threat lifecycle. Schedule a Demo The benefits of cloud network security Cloud networks are inherently complex, and managing them using native tools can leave your organization vulnerable. Using a cloud network security solution offers several advantages. Improved protection The most important benefit of a secure cloud infrastructure is better protection. Managed permissions and orchestration can help prevent breaches and ensure better security across the system. Automated compliance A security solution can also help ensure compliance through automation that reviews policies for the most up-to-date regulatory and industry requirements and deploys the policy to multiple cloud platforms from a single place. Better visibility With a comprehensive solution, you can see all your properties—including on-premise and hybrid systems—in a single pane of glass. Improved visibility means recognizing new threats faster and resolving issues before they arise. Schedule a Demo Cloud network security challenges The cloud offers several benefits over traditional networks but also leads to unique vulnerabilities. Complexity across security control layers Cloud providers’ built-in security controls, such as security groups and network ACLs, impacts security posture. There is a need to protect cloud assets such as virtual machines, DBaaS, and serverless functions. Misconfigurations can introduce security risks across various assets, including IaaS and PaaS. Cloud and traditional firewall providers also offer advanced network security products (such as Azure Firewall, Palo Alto VM-Series, Check Point CloudGuard). Multiple public clouds Today’s environment uses multiple public clouds from AWS, Azure, and GCP. Security professionals are challenged by the need to understand their differences while managing them separately using multiple consoles and diverse tools. Multiple stakeholders Unlike on-premise networks, managing deployment is especially challenging in the cloud, where changes to configurations and security rules are often made by application developers, DevOps, and cloud teams. Schedule a Demo Key layers for cloud security Robust public cloud network security architecture must include four separate areas—layers that build upon each other for an effective network security solution. Cloud security architecture is fundamentally different from its on-premise counterpart. Cloud security challenges are met by a layered approach rather than a physical perimeter. Security for AWS, Azure, or any other public cloud employs four layers of increasing protection. Layer 1: Security groups Security groups form the first and most fundamental layer of cloud network security. Unlike traditional firewalls that use both allow and deny rules, security groups deny traffic by default and only use allow rules. These security groups are similar to the firewalls of the 90s in that they’re directly connected to servers (instances, in cloud architecture terms). If this first layer is penetrated, control of the associated security group is exposed. Layer 2: Network Access Control Lists (NACLs) Network Access Control Lists (NACLs) are used to provide AWS and Azure cloud security. Each NACL is connected to a Virtual Private Network (VPN) or Virtual Private Cloud (VPC) in AWS or VNet in Azure and controls all instances of that VPC or VNet. Centralized NACLs hold both allow and deny rules and make cloud security posture much stronger than Layer 1, making Layer 2 essential for cloud security compliance. Layer 3: Cloud vendor security solution Cloud security is a shared responsibility between the customer and the vendor, and today’s vendors include their own solutions, which must be integrated into the platform as a whole. For example, Microsoft’s Azure Firewall as a Service (FWaaS), a next-generation secure internet gateway, acts like a wall between the cloud itself and the internet. Layer 4: Third-party cloud security services Traditional firewall vendors, like solutions from Check Point (CloudGuard) and Palo Alto Networks (VM-Series), need to be integrated as well. These third parties create firewalls that stand between the public clouds and the outside world. They develop segmentation for the cloud’s inner perimeter like an on-premise network. This fourth layer is key for infrastructure built to defend against the most difficult hybrid cloud security challenges . Schedule a Demo Why AlgoSec AlgoSec Cloud offering provides application-based risk identification and security policy management across the multi-cloud estate. As organizations adopt cloud strategies and migrate applications to take advantage of cloud economies of scale, they face increased complexity and risk. Security controls and network architectures from leading cloud vendors are distinct and do not provide unified central cloud management. Cloud network security under one unified umbrella AlgoSec Cloud offering enables effective security management of the various security control layers across the multi-cloud estate. AlgoSec offers instant visibility, risk assessment, and central policy management , enabling a unified and secure security control posture, proactively detecting misconfigurations. Continuous visibility AlgoSec provides holistic visibility for all of your cloud accounts assets and security controls. Risk management Proactively detect misconfigurations to protect cloud assets, including cloud instances, databases, and serverless functions. Identify risky rules as well as their last usage date and confidently remove them. Tighten overall network security by mapping network risks to applications affected by these risks. Central management of security policies Manage network security controls, such as security groups and Azure Firewalls, in one system across multiple clouds, accounts, regions, and VPC/ VNETs. Manage similar security controls in a single security policy so you can save time and prevent misconfigurations. Policy cleanup As cloud security groups are constantly adjusted, they can rapidly bloat. This makes it difficult to maintain, increasing potential risk. With CloudFlow’s advanced rule cleanup capabilities, you can easily identify unused rules and remove them with confidence. Schedule a Demo Select a size What is cloud network security? How does cloud network security work? The benefits of cloud network security Cloud network security challenges Key layers for cloud security Why AlgoSec Get the latest insights from the experts 6 best practices to stay secure in the hybrid cloud Read more The enterprise guide to hybrid network management Read more Multi-Cloud Security Network Policy and Configuration Management Read more Choose a better way to manage your network

  • AlgoSec Cloud for Microsoft Azure | AlgoSec

    Optimize cloud security and management with AlgoSec Cloud for Microsoft Azure, providing visibility, compliance, and automation for your hybrid cloud environment. AlgoSec Cloud for Microsoft Azure Cloud security policy and configuration management made simple As organizations adopt cloud strategies and migrate applications to Microsoft Azure and other clouds to take advantage of economies of scale, they face new levels of complexity and risk to their security posture. Security controls and network architectures in Azure are distinct from those found in on-premise data centers. Customers of Azure services often do not know how to use them securely. AlgoSec Cloud enables effective management of the security control layers across the hybrid and multi-cloud estate, including Microsoft Azure. Schedule a Demo Cloud security main challenges IT and Security staffs find it difficult to create and maintain security in the cloud due to: Complexity of multiple layers of security controls includingCloud providers’ built-in configurations that impact security posture, such as IAM permissions, encryption state, security groups, public/private permissions, asset types like databases, storage and accounts, as well as configuration types like deployment location, networks ACLs, and Misconfigurations can result in security risks across various assets, including IaaS, PaaS and accounts. Security products by cloud providers with many different mechanisms and operational rules and techniques like Azure Security products by independent security vendors (e.g., Next Generation Firewalls by Check Point and Palo Alto Networks). Multiple public clouds along with private clouds and on-premise Security professionals are challenged by the need to understand the differences in the technologies while managing them separately using multiple consoles and diverse tools. Multiple stakeholders managing the security in the cloud. Unlike on-prem networks where policies are typically managed by security teams, in the cloud, other stakeholders (application developers, DevOps, cloud teams) manage changes to cloud configurations and security rules, challenging consistency and control, and increasing the risk of misconfigurations Schedule a Demo All cloud security under a single umbrella AlgoSec Cloud enables effective security management of the various security-control layers across the multi-cloud estate. AlgoSec Cloud central management provides instant visibility, risk assessment and compliance analysis, enabling enforcement of company and regulatory policies, and proactive detection of misconfigurations Schedule a Demo Manage your Microsoft Azure security environment When used in conjunction with AlgoSec’s Firewall Analyzer and FireFlow, customers benefit from a hybrid approach, spanning on-premise, SDN and legacy network security. Continuous Visibility. Always know about the assets that require protection and the multiple security constructs and configurations protecting them. Monitor changes to the cloud configuration and the potential risk of each change. Risk management and compliance. Enforce company and regulatory policies while verifying adherence to best practices. Proactively detect misconfigurations in access, permissions and other configurations to protect cloud assets, including cloud accounts, VMs, storage, databases and more. Automated central management of security policies. Manage network security controls (Network Security Groups, etc.) in one system across multiple accounts, regions and VNETs. Leverage a uniform network model and change- management framework that covers the hybrid and multi-cloud environment. Schedule a Demo Azure Firewall AlgoSec delivers an intuitive and effective central management solution for Azure Firewall, Microsoft’s cloud-native, scalable network and application firewall. Users can consistently manage multiple instances of Azure Firewalls across regions and multiple Azure accounts. Schedule a Demo Quick deployment AlgoSec Cloud is an agentless SaaS solution and is easy to deploy in minutes. It offers immediate ROI and significant security improvements. Schedule a Demo Key Business Benefits Enhanced visibility across the entire hybrid and multi-cloud estate Improved cloud-security posture to avoid breaches Automatic compliance assurance with constant audit-readiness Secure change management at the speed of cloud deployment Reduced manual labor, errors, and associated risks and costs Schedule a Demo AlgoSec Cloud Advantages Unified view of the entire network, hybrid and multi-cloud estates from a unified platform Simplified management of complex multi-layered cloud security controls Automatic risk detection and recommended best practices Avoidance of false alarms – risk analysis takes into consideration all security constructs Schedule a Demo Comprehensive and Unified Security for Heterogeneous Environments AlgoSec seamlessly integrates with all leading brands of traditional and next-generation firewalls and cloud security controls as well as routers, load balancers, web proxies, and SIEM solutions, to deliver unified security policy management across any hybrid-cloud, multi-cloud, SDN, and on-premise network. Additional devices can be added via the AlgoSec Extension Framework. Let's start your journey to our business-centric network security. Schedule a Demo Select a size Cloud security policy and configuration management made simple Cloud security main challenges All cloud security under a single umbrella Manage your Microsoft Azure security environment Azure Firewall Quick deployment Key Business Benefits AlgoSec Cloud Advantages Comprehensive and Unified Security for Heterogeneous Environments Get the latest insights from the experts Choose a better way to manage your network

  • Enterprise Guide To Cloud Security - AlgoSec

    Enterprise Guide To Cloud Security Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Energy Company | AlgoSec

    Explore Algosec's customer success stories to see how organizations worldwide improve security, compliance, and efficiency with our solutions. Leading Energy Company Embraces Network Security Policy Automation Organization Energy Company Industry Utilities & Energy Headquarters California, USA Download case study Share Customer
success stories "We can demonstrate that the firewalls meet our standards." Fortune 50-listed energy company cleans up hundreds of firewall rules, gains continuous compliance. Background The customer is one of the world’s leading integrated energy companies. Through its worldwide subsidiaries, the company is involved in virtually every facet of the energy industry. The company explores for, produces and transports crude oil and natural gas; refines, markets and distributes transportation fuels and lubricants; manufactures and sells petrochemicals and additives; generates power; and develops and deploys technologies that enhance business value in every aspect of the company’s operations. They are listed on the Fortune 50 and a component of the S&P 100. The Challenge The customer has over 900 firewalls throughout the world, including in several remote sites. Some of their challenges included: Overly broad firewall policies Risky firewall rules Pressure from legal and compliance teams Manual processes and difficulty implementing automation Lack of visibility into security policies throughout the network “Before AlgoSec, we didn’t manage our firewalls very well,” stated Jeremy Haynes, a Solution Architect at the energy company. “We did not have a good enforcement and validation tool to verify that policies were accurate and did not introduce unacceptable risk.” The Solution The company was in the process of migrating from their previous firewall vendor to Palo Alto Networks. They used the opportunity for a fresh start to clean up and optimize their security policies. They were searching for a solution that provided: Automation of firewall policy management Identification of layer 7 (application-based) policies Innovative features that aligned with their strategic goals Strong support for Palo Alto Networks firewalls Following an in-depth evaluation, the company selected AlgoSec’s Security Policy Management Solution, which includes AlgoSec Firewall Analyzer (AFA) and AlgoSec FireFlow (AFF). AlgoSec Firewall Analyzer ensures security and compliance by providing visibility and analysis into complex network security policies. AlgoSec FireFlow improves security and saves security staffs’ time by automating the entire security policy change process, eliminating manual errors, and reducing risk. The Results By using the AlgoSec Security Management Solution, the company was able to clean up risky firewall policies, reduce misconfigurations, and dedicate more workers to business-driven innovation instead of security policy maintenance. Some benefits gained include: Compliance with internal requirements Ability to map out their network and maintain network segmentation Less time needed to maintain firewall policies Easier time managing hundreds of firewalls spread out worldwide AlgoSec enabled their network segmentation initiatives. By mapping their network, and determining what zones should communicate with each other, they were able to fix existing policies that broke segmentation rules and not break segmentation policies in the future. This helped ensure a state of continuous compliance. “AlgoSec gives us an easy to read and present view of firewall compliance. This helps our business units ensure their policies are clean. We can also demonstrate that the firewalls connected to our network, but owned by other business units, meet our standards,” according to Haynes. They have over 1,700 change requests daily and therefore automation is crucial. “The ability to work with Ansible, ServiceNow, and Palo Alto gives us the ability to automate our firewall policy creation. It does so in a manner where we do not have to worry about a policy being created that may put our organization at risk,” continued Haynes. AlgoSec helps the company to not only quickly deploy firewall policies but also ensure the security of the business. “We want to make sure our money-making capabilities can conduct their business with minimal impact and do their job. The ROI for us is our great assurance in the security of our firewall policies,” concluded Haynes. Schedule time with one of our experts

  • AlgoSec | Securely accelerating application delivery

    In this guest blog, Jeff Yager from IT Central Station (soon to be PeerSpot), discusses how actual AlgoSec users have been able to... Security Policy Management Securely accelerating application delivery Jeff Yeger 2 min read Jeff Yeger Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/15/21 Published In this guest blog, Jeff Yager from IT Central Station (soon to be PeerSpot), discusses how actual AlgoSec users have been able to securely accelerate their app delivery. These days, it is more important than ever for business owners, application owners, and information security professionals to speak the same language. That way, their organizations can deliver business applications more rapidly while achieving a heightened security posture. AlgoSec’s patented platform enables the world’s most complex organizations to gain visibility and process changes at zero-touch across the hybrid network. IT Central Station members discussed these benefits of AlgoSec , along with related issues, in their reviews on the site. Application Visibility AlgoSec allows users to discover, identify, map, and analyze business applications and security policies across their entire networks. For instance, Jacob S., an IT security analyst at a retailer, reported that the overall visibility that AlgoSec gives into his network security policies is high. He said, “It’s very clever in the logic it uses to provide insights, especially into risks and cleanup tasks . It’s very valuable. It saved a lot of hours on the cleanup tasks for sure. It has saved us days to weeks.” “AlgoSec absolutely provides us with full visibility into the risk involved in firewall change requests,” said Aaron Z. a senior network and security administrator at an insurance company that deals with patient health information that must be kept secure. He added, “There is a risk analysis piece of it that allows us to go in and run that risk analysis against it, figuring out what rules we need to be able to change, then make our environment a little more secure. This is incredibly important for compliance and security of our clients .” Also impressed with AlgoSec’s overall visibility into network security policies was Christopher W., a vice president – head of information security at a financial services firm, who said, “ What AlgoSec does is give me the ability to see everything about the firewall : its rules, configurations and usage patterns.” AlgoSec gives his team all the visibility they need to make sure they can keep the firewall tight. As he put it, “There is no perimeter anymore. We have to be very careful what we are letting in and out, and Firewall Analyzer helps us to do that.” For a cyber security architect at a tech services company, the platform helps him gain visibility into application connectivity flows. He remarked, “We have Splunk, so we need a firewall/security expert view on top of it. AlgoSec gives us that information and it’s a valuable contributor to our security environment.” Application Changes and Requesting Connectivity AlgoSec accelerates application delivery and security policy changes with intelligent application connectivity and change automation. A case in point is Vitas S., a lead infrastructure engineer at a financial services firm who appreciates the full visibility into the risk involved in firewall change requests. He said, “[AlgoSec] definitely allows us to drill down to the level where we can see the actual policy rule that’s affecting the risk ratings. If there are any changes in ratings, it’ll show you exactly how to determine what’s changed in the network that will affect it. It’s been very clear and intuitive.” A senior technical analyst at a maritime company has been equally pleased with the full visibility. He explained, “That feature is important to us because we’re a heavily risk-averse organization when it comes to IT control and changes. It allows us to verify, for the most part, that the controls that IT security is putting in place are being maintained and tracked at the security boundaries .” A financial services firm with more than 10 cluster firewalls deployed AlgoSec to check the compliance status of their devices and reduce the number of rules in each of the policies. According to Mustafa K. their network security engineer, “Now, we can easily track the changes in policies. With every change, AlgoSec automatically sends an email to the IT audit team. It increases our visibility of changes in every policy .” Speed and Automation The AlgoSec platform automates application connectivity and security policy across a hybrid network so clients can move quickly and stay secure. For Ilya K., a deputy information security department director at a computer software company, utilizing AlgoSec translates into an increase in security and accuracy of firewall rules. He said, “ AlgoSec ASMS brings a holistic view of network firewall policy and automates firewall security management in very large-sized environments. Additionally, it speeds up the changes in firewall rules with a vendor-agnostic approach.” “The user receives the information if his request is within the policies and can continue the request,” said Paulo A., a senior information technology security analyst at an integrator. He then noted, “Or, if it is denied, the applicant must adjust their request to stay within the policies. The time spent for this without AlgoSec is up to one week, whereas with AlgoSec, in a maximum of 15 minutes we have the request analyzed .” The results of this capability include greater security, a faster request process and the ability to automate the implementation of rules. Srdjan, a senior technical and integration designer at a large retailer, concurred when he said, “ By automating some parts of the work, business pressure is reduced since we now deliver much faster . I received feedback from our security department that their FCR approval process is now much easier. The network team is also now able to process FCRs much faster and with more accuracy.” To learn more about what IT Central Station members think about AlgoSec, visit https://www.itcentralstation.com/products/algosec-reviews Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Natura Cosméticos | AlgoSec

    Explore Algosec's customer success stories to see how organizations worldwide improve security, compliance, and efficiency with our solutions. Natura Cosméticos Improves Security Change Management with AlgoSec Organization Natura Cosméticos Industry Healthcare & Pharmaceuticals Headquarters Brazil Download case study Share Customer
success stories "With AlgoSec we are proactive. Now we can see all the changes and reduce the risks we have regarding requirements for SOX as well as maintain all the policies for information security" International Cosmetics Company Gains Visibility, Reduces Risk and Ensures Compliance with SOX AlgoSec Business Impact Deliver proactive security policy management Gain immediate visibility into all security policy changes Reduce risks and ensure compliance with SOX Background Natura Cosméticos is the largest cosmetics manufacturer and distributor in Latin America, with more than 1.5 million independent consultants and 100 million customers. Founded in 1969, the company is based in Brazil, where almost two-thirds of households buy its products. At $7.5 billion in revenues, Natura is a Forbes Global 2000 company and ranked #75 on the magazine’s most innovative companies list in 2014. Challenge Natura has offices throughout Brazil and operations throughout Latin America and France supported by two data centers, 33 firewalls, 18 clusters and 250 switches and routers. For years, a third party managed the company’s firewall rule changes, making visibility and management challenging.“If a change was made over the weekend, it would be difficult for us to find out what rules were changed, for what reason, who created them or why,” says Newton Rossetto, Chief Security Officer, Natura Cosméticos.“We’d find some firewall rules in the wrong places and unused rules,” adds Rossetto, but changing them was no simple matter. “Users had to create a worksheet with their requirements for our environment and then they would be implemented by a third party. After the rule was created, we then needed to check that it was right.” Natura needed a streamlined system for making and tracking security changes that gave IT better visibility across the company’s complex security environment. Solution Natura recognized that it had a “really confusing change management process,” Rossetto states. The company chose the AlgoSec Security Management Solution to manage and streamline the process. Results After a “simple and quick deployment,” according to Rossetto, AlgoSec enabled Natura to quickly “consolidate security policy management for our environment.” AlgoSec provides detailed online reports for each step of the change workflow and enables Rossetto’s team to manage security policy changes for multiple security devices on one common platform.“Now I can see all of the reports I need at any time. I can also see which rules were created and what objects are no longer needed,” says Rossetto. This visibility has allowed Natura to take a proactive role in security policy management which had been impossible when changes were previously outsourced to a third party. For a company growing at 14 percent each year, particularly one that does the majority of its sales and workforce management online, having complete visibility into the security rule-change process brings real peace of mind.For the Natura team, AlgoSec’s preset workflows for implementing and removing rules, changing objects and verifying rules, combined with its flexibility to accommodate the company’s specific needs, held great appeal. In addition, users liked the pre-populated request templates that saved them time compared to the old worksheets, as well as simplified communication with the security team. “With AlgoSec, the change management process is all automatic. We can approve the changes and know we will have the right rules with the right objects,” says Rossetto.AlgoSec also helped Natura’s security team reduce risks associated with Sarbanes-Oxley (SOX) requirements. AlgoSec evaluates every proposed change against regulatory standards, such as SOX, as well as industry best practices and corporate-specific policies. Any change found to be out of compliance is flagged before it can be implemented.In terms of customer service, as well as implementation, Rossetto states that working with AlgoSec has “been a very good experience. We have been very well supported from negotiation through successful deployment. We are very satisfied.” Schedule time with one of our experts

  • 5 Keys to Success: Automating compliance for network security | AlgoSec

    Learn best practices for mastering compliance automation for network security Webinars 5 Keys to Success: Automating compliance for network security In a landscape where technological progression is rapidly advancing every day, network security has become a crucial factor in the success of businesses. Keeping sensitive data secure is no longer just an option, it’s a necessity. But, with security issues constantly on the rise, maintaining compliance can be an overwhelming and time-consuming task for IT professionals. In this webinar, we cover automating compliance for network security as a key component for ensuring business. Join us to see why this is a crucial aspect of ensuring business success in today’s digital landscape. June 13, 2023 Tsippi Dach Director of marketing communications Asher Benbenisty Director of product marketing Relevant resources Cisco Regulatory Compliance Watch Video Automated Security Policy Changes for Speed and Compliance Keep Reading [Panel] How financial institutions can achieve network security and compliance Keep Reading Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | 2023 Cybersecurity Predictions and Best Practices

    As 2022 comes to a close, Professor Avishai Wool, AlgoSec Co-Founder and CTO, provides his top 5 issues organizations will need to be... IaC 2023 Cybersecurity Predictions and Best Practices Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/6/22 Published As 2022 comes to a close, Professor Avishai Wool, AlgoSec Co-Founder and CTO, provides his top 5 issues organizations will need to be aware in 2023 that will also dominate the cyber community conversation. 1) Application centric approach to network security will supersede basic NSPM I think the market has matured to the point where the NSPM approach has reached a tipping point and I see the shift to an application perspective becoming the de facto approach in network security policy management as there are better and more robust technologies in the market that can help organizations get there faster. I see this shift becoming even more viable in 2023 based on recent market trends in which organizations are opting for downsizing and trying to do more with the smaller staff at the expense of losing tribal knowledge. As a result, I see organizations shifting more towards adopting a holistic approach to network security that are more application centric in which they can retain critical knowledge, such as application traffic intent and application policy rules, so that the new generations can step in and pick up where the previous predecessors left off. 2) Containerization will enhance layered security I expect container security to be increasingly popular in the future, as companies understand that their existing network security mechanisms are not enough for the communication networks of today. Containers are seen as a cost-effective light-weight solution for deployment – and deploying them introduces another inner layer where security policies can be applied: behind the perimeter filters, the internal zoning, and the micro-segmentation, organizations can now also consider nano-segmentation at the container level. Vulnerability testing is another dimension of the container platform especially within cloud applications and SaaS products. The common Kubernetes platform offers both opportunities and challenges for vulnerability scanners. Beyond 2023 , businesses will need to enhance both their visibility and management capabilities of security within their containerized applications 3) Security driven IaaS ecosystems to improve network security I expect the popularity of Infrastructure as a service (IaaS) to continue to soar, making it difficult for security teams to keep up with the associated risks and vulnerabilities. Pre-set security settings may not meet the needs of the organization and customizing these settings can prove to be difficult. The customizability of IaaS offers great potential for productivity, but it also makes it complicated to secure. The bottom line is that companies can no longer depend on their network perimeter to guard sensitive data. In response, I anticipate organizations that begin utilizing an “Always-on Security” approach such as Infrastructure as Code (IaC) which would permit them to construct personalized policies to control the development environments during each phase of the software development life cycle (SDLC) and recognize potential risks, security flaws, and compliance issues on a what-if basis, before deploying flawed settings into production. 4) Cloud-native security tools will reign supreme I expect that cloud-based security systems will become more commonplace: these security solutions offer a wide range of abilities, such as secure access, identity and access management, data loss prevention, application security, automation of security, detection and prevention of intrusions, security information and event management, and encryption. With companies transitioning more workloads to the cloud, they will want to make use of many of these features. These tools make it possible for remote teams to manage a greater public cloud presence: comfortably configuring services and automating processes, to identify and preemptively tackle any kind of threats. To bridge the gap in cloud data security, I anticipate the emergence of data safeguarding systems that are designed specifically for cloud usage and are able to link up with public cloud systems in an advanced, agentless manner. This has been classified in the market as Cloud Native Application Protection Platform (CNAPP) . These platforms must be able to detect where the data is stored and what sorts of data are stored in the cloud, so that corporations can prioritize on what is most important – defending their most sensitive data and cloud-based applications without interfering with their normal operations. 5) Expect ransomware not to go away and get even more sophisticated Organizations in 2022 saw no let-up from ransomware threats, some of whom were attacked multiple times and I do not see any reason why this trend will change in 2023. Cyber criminals are getting more resourceful and savvier in their attempts to stay ahead of law enforcement, and I anticipate these attacks will only become more frequent as their perpetrators are proving more capable of infiltrating many organizations’ cyber defenses. In response, organizations will have to seek more technology solutions to protect data at the source. But that would not suffice. I think organizations will need to look beyond technological solutions and apply better preparedness strategies. Whether it be Zero Trust or something less overarching but more practical for an organization’s business needs, such as Micro-segmentation , it would ensure that threat-actors would not be able to access the data residing inside the security perimeter. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

bottom of page