

Search results
625 results found with an empty search
- AlgoSec | Bridging the DevSecOps Application Connectivity Disconnect via IaC
Anat Kleinmann, AlgoSec Sr. Product Manager and IaC expert, discusses how incorporating Infrastructure-as-Code into DevSecOps can allow... Risk Management and Vulnerabilities Bridging the DevSecOps Application Connectivity Disconnect via IaC Anat Kleinmann 2 min read Anat Kleinmann Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/7/22 Published Anat Kleinmann, AlgoSec Sr. Product Manager and IaC expert, discusses how incorporating Infrastructure-as-Code into DevSecOps can allow teams to take a preventive approach to secure application connectivity . With customer demands changing at breakneck speed, organizations need to be agile to win in their digital markets. This requires fast and frequent application deployments, forcing DevOps teams to streamline their software development processes. However, without the right security tools placed in the early phase of the CI/CD pipeline, these processes can be counterproductive leading to costly human errors and prolonged application deployment backups. This is why organizations need to find the right preventive security approach and explore achieving this through Infrastructure-as-Code. Understanding Infrastructure as Code – what does it actually mean? Infrastructure-as-Code (Iac) is a software development method that describes the complete environment in which the software runs. It contains information about the hardware, networks, and software that are needed to run the application. IAC is also referred to as declarative provisioning or automated provisioning. In other words, IAC enables security teams to create an automated and repeatable process to build out an entire environment. This is helpful for eliminating human errors that can be associated with manual configuration. The purpose of IaC is to enable developers or operations teams to automatically manage, monitor and provision resources, rather than manually configure discrete hardware devices and operating systems. What does IaC mean in the context of running applications in a cloud environment When using IaC, network configuration files can contain your applications connectivity infrastructure connectivity specifications changes, which mkes it easier to edit, review and distribute. It also ensures that you provision the same environment every time and minimizes the downtime that can occur due to security breaches. Using Infrastructure as code (IaC) helps you to avoid undocumented, ad-hoc configuration changes and allows you to enforce security policies in advance before making the changes in your network. Top 5 challenges when not embracing a preventive security approach Counterintuitive communication channel – When reviewing the code manually, DevOps needs to provide access to a security manager to review it and rely on the security manager for feedback. This can create a lot of unnecessary back and forth communication between the teams which can be a highly counterintuitive process. Mismanagement of DevOps resources – Developers need to work on multiple platforms due to the nature of their work. This may include developing the code in one platform, checking the code in another, testing the code in a third platform and reviewing requests in a fourth platform. When this happens, developers often will not be alerted of any network risk or non-compliance issue as defined by the organization. Mismanagement of SecOps resources – At the same time, network security managers are also bombarded with security review requests and tasks. Yet, they are expected to be agile, which is impossible in case of manual risk detection. Inefficient workflow – Sometimes risk analysis process is skipped and only reviewed at the end of the CI/CD pipeline, which prolongs the delivery of the application. Time consuming review process – The risk analysis review itself can sometimes take more than 30 minutes long which can create unnecessary and costly bottlenecking, leading to missed rollout deadlines of critical applications Why it’s important to place security early in the development cycle Infrastructure-as-code (IaC) is a crucial part of DevSecOps practices. The current trend is based on the principle of shift-left, which places security early in the development cycle. This allows organizations to take a proactive, preventive approach rather than a reactive one. This approach solves the problem of developers leaving security checks and testing for the later stages of a project often as it nears completion and deployment. It is critical to take a proactive approach since late-stage security checks lead to two critical problems. Security flaws can go undetected and make it into the released software, and security issues detected at the end of the software development lifecycle demand considerably more time, resources and money to remediate than those identified early on. The Power of IaC Connectivity Risk Analysis and Key Benefits IaC connectivity risk analysis provides automatic and proactive connectivity risk analysis, enabling a frictionless workflow for DevOps with continuous customized risk analysis and remediation managed and controlled by the security managers. IaC Connectivity Risk Analysis enables organizations to use a single source of truth for managing the lifecycle of their applications. Furthermore, security engineers can use IaC to automate the design, deployment, and management of virtual assets across a hybrid cloud environment. With automated security tests, engineers can also continuously test their infrastructure for security issues early in the development phase. Key benefits Deliver business applications into production faster and more securely Enable a frictionless workflow with continuous risk analysis and remediation Reduce connectivity risks earlier in the CI/CD process Customizable risk policy to surface only the most critical risks The Takeaway Don’t get bogged down by security and compliance. When taking a preventive approach using a connectivity risk analysis via IaC, you can increase the speed of deployment, reduce misconfiguration and compliance errors, improve DevOps – SecOps relationship and lower costs Next Steps Let AlgoSec’s IaC Connectivity Risk Analysis can help you take a proactive, preventive security approach to get DevOps’ workflow early in the game, automatically identifying connectivity risks and providing ways to remediate them. Watch this video or visit us at GitHub to learn how. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | 5 mindset shifts security teams must adopt to master multi-cloud security
Level Up Your Security Game: Time for a Mindset Reset! Hey everyone, and welcome! If you're involved in keeping your organization safe... 5 mindset shifts security teams must adopt to master multi-cloud security Iris Stein 2 min read Iris Stein Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 4/9/25 Published Level Up Your Security Game: Time for a Mindset Reset! Hey everyone, and welcome! If you're involved in keeping your organization safe online these days, you're in the right place. For years, security felt like building a super strong castle with thick walls and a deep moat, hoping the bad guys would just stay outside. But let's be real, in our multi-cloud world, that castle is starting to look a little... outdated. Think about it: your apps and data aren't neatly tucked away in one place anymore. They're bouncing around on AWS, Azure, GCP, all sorts of platforms – practically everywhere! Trying to handle that with old-school security is like trying to catch smoke with a fishing net. Not gonna work, right? That's why we're chatting today. Gal Yosef, Head of Product Management in the U.S., gets it. He's helped us dive into some crucial mindset shifts – basically, new ways of thinking – that are essential for navigating the craziness of modern security. We gotta ditch the old ways and get ready to be more agile, work together better, and ultimately, be way more effective. Mindset Shift #1: From "Our Stuff is Safe Inside This Box" to "Trust Nothing, Verify Everything" Remember the good old days? We built a perimeter – firewalls, VPNs – thinking that everything inside was safe and sound (danger!). Security was all about guarding that edge. The Problem: Well, guess what? That world is gone! Multi-cloud environments have totally shattered that perimeter. Trying to just secure the network edge leaves your real treasures – your applications, users, and data – vulnerable as they roam across different clouds. It's like locking the front door but leaving all the windows wide open! The New Way: Distributed Trust. Security needs to follow your assets, wherever they go. Instead of just focusing on the infrastructure (the pipes and wires), we need to embrace Zero-Trust principles . Think of it like this: never assume anyone or anything is trustworthy, even if they're "inside." We need identity-based, adaptive security policies that constantly validate trust, rather than just assuming it based on location. Security becomes built into applications and workloads, not just bolted onto the network. Think of it this way: Instead of one big, guarded gate, you have individual, smart locks on every valuable asset. You're constantly checking who's accessing what, no matter where they are. It's like having a personal bodyguard for each of your important things, always making sure they have the right ID. Mindset Shift #2: From "My Team Handles Network Security, Their Team Handles Cloud Security" to "Let's All Be Security Buddies!" Ever feel like your network security team speaks a different language than your cloud security team? You're not alone! Traditionally, these have been separate worlds, with network teams focused on firewalls and cloud teams on security groups. The Problem: These separate silos are a recipe for confusion and fragmented security policies. Attackers? They love this! It's like having cracks in your armor. They aren't always going to bash down the front door; they're often slipping through the gaps created by this lack of communication. The New Way: Cross-functional collaboration. We need to tear down those walls! Network and cloud security teams need to work together, speaking a shared security language. Unified visibility and consistent policies across all your environments are key. Think of it like a superhero team – everyone has their own skills, but they work together seamlessly to fight the bad guys. Regular communication, shared tools, and a common understanding of the risks are crucial. Mindset Shift #3: From "Reacting When Something Breaks" to "Always Watching and Fixing Things Before They Do" Remember the old days of waiting for an alert to pop up saying something was wrong? That's like waiting for your car to break down before you even think about checking the oil. Not the smartest move, right? The Problem: In the fast-paced world of the cloud, waiting for things to go wrong is a recipe for disaster. Attacks can happen super quickly, and by the time you react, the damage might already be done. Plus, manually checking everything all the time? Forget about it – it's just not scalable when you've got stuff spread across multiple clouds. The New Way: Continuous & Automated Enforcement. We need to shift to a mindset of constant monitoring and automated security actions. Think of it like having a security system that's always on, always learning, and can automatically respond to threats in real-time. This means using tools and processes that continuously check for vulnerabilities, enforce security policies automatically, and even predict potential problems before they happen. It's like having a proactive security guard who not only watches for trouble but can also automatically lock doors and sound alarms the moment something looks fishy. Mindset Shift #4: From "Locking Everything Down Tight" to "Finding the Right Balance with Flexible Rules" We used to think the best security was the strictest security – lock everything down, say "no" to everything. But let's be honest, that can make it super hard for people to actually do their jobs! It's like putting so many locks on a door that nobody can actually get through it. The Problem: Overly restrictive security can stifle innovation and slow things down. Developers can get frustrated, and the business can't move as quickly as it needs to. Plus, sometimes those super strict rules can even create workarounds that actually make things less secure in the long run. The New Way: Flexible Guardrails. We need to move towards security that provides clear boundaries (the "guardrails") but also allows for agility and flexibility. Think of it like setting clear traffic laws – you know what's allowed and what's not, but you can still drive where you need to go. This means defining security policies that are adaptable to different cloud environments and business needs. It's about enabling secure innovation, not blocking it. We need to find that sweet spot where security empowers the business instead of hindering it. Mindset Shift #5: From "Security is a Cost Center" to "Security is a Business Enabler" Sometimes, security gets seen as just an expense, something we have to do but doesn't really add value. It's like thinking of insurance as just another bill. The Problem: When security is viewed as just a cost, it often gets underfunded or seen as a roadblock. This can lead to cutting corners and ultimately increasing risk. It's like trying to save money by neglecting the brakes on your car – it might seem cheaper in the short term, but it can have disastrous consequences later. The New Way: Security as a Business Enabler. We need to flip this thinking! Strong security isn't just about preventing bad things from happening; it's about building trust with customers, enabling new business opportunities, and ensuring the long-term resilience of the organization. Think of it like a strong foundation for a building – without it, you can't build anything lasting. By building security into our processes and products from the start, we can actually accelerate innovation and gain a competitive advantage. It's about showing our customers that we take their data seriously and that they can trust us. Wrapping Up: Moving to a multi-cloud world is exciting, but it definitely throws some curveballs at how we think about security. By adopting these five new mindsets, we can ditch the outdated castle mentality and build a more agile, collaborative, and ultimately more secure future for our organizations. It's not about being perfect overnight, but about starting to shift our thinking and embracing these new approaches. So, let's level up our security game together! Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Top 6 Hybrid Cloud Security Solutions: Key Features for 2024
Hybrid cloud security uses a combination of on-premises equipment, private cloud deployments, and public cloud platforms to secure an... Uncategorized Top 6 Hybrid Cloud Security Solutions: Key Features for 2024 Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/15/24 Published Hybrid cloud security uses a combination of on-premises equipment, private cloud deployments, and public cloud platforms to secure an organization’s data, apps, and assets. It’s vital to the success of any organization that uses hybrid cloud network infrastructure. The key factors that make hybrid cloud security different from other types of security solutions are flexibility and agility. Your hybrid cloud security solution must be able to prevent, detect, and respond to threats regardless of the assets they compromise. That means being able to detect anomalous behaviors and enforce policies across physical endpoints, cloud-hosted software-as-a-service (SaaS) deployments, and in public cloud data centers. You need visibility and control wherever your organization stores or processes sensitive data. What is Hybrid Cloud Security? To understand hybrid cloud security, we must first cover exactly what the hybrid cloud is and how it works. Hybrid cloud infrastructure generally refers to any combination of public cloud providers (like AWS, Azure, Google Cloud) and private cloud environments. It’s easy to predict the security challenges hosting some of your organization’s apps on public cloud infrastructure and other apps on its own private cloud. How do you gain visibility across these different environments? How do you address vulnerabilities and misconfiguration risks? Hybrid cloud architecture can create complex problems for security leaders. However, it provides organizations with much-needed flexibility and offers a wide range of data deployment options. Most enterprises use a hybrid cloud strategy because it’s very rare for a large organization to entrust its entire IT infrastructure to a single vendor. As a result, security leaders need to come up with solutions that address the risks unique to hybrid cloud environments. Key Features of Hybrid Cloud Security An optimized hybrid cloud security solution gives the organization a centralized point of reference for managing security policies and toolsets across the entire environment. This makes it easier for security leaders to solve complex problems and detect advanced threats before they evolve into business disruptions. Hybrid cloud infrastructure can actually improve your security posture if managed appropriately. Some of the things you can do in this kind of environment include: Manage security risk more effectively. Lock down your most sensitive and highly regulated data in infrastructure under your direct control, while saving on cloud computing costs by entrusting less sensitive data to a third party. Distribute points of failure. Diversifying your organization’s cloud infrastructure reduces your dependence on any single cloud platform. This amplifies many of the practical benefits of network segmentation. Implement Zero Trust. Hybrid cloud networks can be configured with strict access control and authentication policies. These policies should work without regard to the network’s location, providing a strong foundation for demonstrating Zero Trust . Navigate complex compliance requirements. Organizations with hybrid cloud infrastructure are well-prepared to meet strict compliance requirements that apply to certain regions, like CCPA or GDPR data classification . With the right tools, demonstrating compliance through custom reports is easy. Real-time monitoring and remediation . With the right hybrid cloud security solutions in place, you can gain in-depth oversight into cloud workloads and respond immediately to security incidents when they occur. How Do Hybrid Cloud Security Solutions Work? Integration with Cloud Platforms The first step towards building a hybrid cloud strategy is determining how your cloud infrastructure deployments will interact with one another. This requires carefully reviewing the capabilities of the major public cloud platforms you use and determining your own private cloud integration capabilities. You will need to ensure seamless operation between these platforms while retaining visibility over your entire network. using APIs to programmatically connect different aspects of your cloud environment can help automate some of the most time-intensive manual tasks. For example, you may need to manage security configurations and patch updates across many different cloud resources. This will be very difficult and time-consuming if done manually, but a well-integrated automation-ready policy management solution can make it easy. Security Controls and Measures Your hybrid cloud solution will also need to provide comprehensive tools for managing firewalls and endpoints throughout your environment. These security tools can’t work in isolation — they need consistent policies informed by observation of your organization’s real-world risk profile. That means you’ll need to deploy a centralized solution for managing the policies and rulesets these devices use, and continuously configure them to address the latest threats. You will also need to configure your hybrid cloud network to prevent lateral movement and make it harder for internal threat actors to execute attacks. This is achieved with network segmentation, which partitions different parts of your network into segments that do not automatically accept traffic from one another. Microsegmentation further isolates different assets in your network according to their unique security needs, allowing access only to an exclusive set of users and assets. Dividing cloud workloads and resources into micro-segmented network zones improves network security and makes it harder for threat actors to successfully launch malware and ransomware attacks. It reduces the attack surface and enhances your endpoint security capabilities by enabling you to quarantine compromised endpoints the moment you detect unauthorized activity. How to Choose a Hybrid Cloud Security Provider Your hybrid cloud security provider should offer an extensive range of features that help you optimize your cloud service provider’s security capabilities. It should seamlessly connect your security team to the cloud platforms it’s responsible for protecting, while providing relevant context and visibility into cloud security threats. Here are some of the key features to look out for when choosing a hybrid cloud security provider: Scalability and Flexibility. The solution must scale according to your hybrid environment’s needs. Changing security providers is never easy, and you should project its capabilities well into the future before deciding to go through with the implementation. Pay close attention to usage and pricing models that may not be economically feasible as your organization grows. SLAs and Compliance. Your provider must offer service-level agreements that guarantee a certain level of performance. These SLAs will also play an important role ensuring compliance requirements are always observed, especially in highly regulated sectors like healthcare. Security Posture Assessment. You must be able to easily leverage the platform to assess and improve your overall security posture in a hybrid cloud model. This requires visibility and control over your data, regardless of where it is stored or processed. Not all hybrid cloud security solutions have the integrations necessary to make this feasible. DevSecOps Integration. Prioritize cloud security providers that offer support for integrating security best practices into DevOps, and providing security support early in the software development lifecycle. If your organization plans on building continuous deployment capabilities now or in the future, you will need to ensure your cloud security platform is capable of supporting those workflows. Top 6 Hybrid Cloud Security Solutions 1. AlgoSec AlgoSec is an application connectivity platform that manages security policies across hybrid and multi-cloud environments . It allows security leaders to take control of their apps and security tools, managing and enforcing policies that safeguard cloud services from threats. AlgoSec supports the automation of data security policy changes and allows users to simulate configuration changes across their tech stack. This makes it a powerful tool for in-depth risk analysis and compliance reporting, while giving security leaders the features they need to address complex hybrid cloud security challenges . Key Features: Complete network visualization. AlgoSec intelligently analyzes application dependencies across the network, giving security teams clear visibility into their network topology. Zero-touch change management. Customers can automate application and policy connectivity changes without requiring manual interaction between administrators and security tools. Comprehensive security policy management. AlgoSec lets administrators manage security policies across cloud and on-premises infrastructure, ensuring consistent security throughout the organization. What Do People Say About AlgoSec? AlgoSec is highly rated for its in-depth policy management capabilities and its intuitive, user-friendly interface. Customers praise its enhanced visibility, intelligent automation, and valuable configuration simulation tools. AlgoSec provides security professionals with an easy way to discover and map their network, and scale policy management even as IT infrastructure grows. 2. Microsoft Azure Security Center Microsoft Azure Security Center provides threat protection and unified security management across hybrid cloud workloads. As a leader in cloud computing, Microsoft has equipped Azure Security Center with a wide range of cloud-specific capabilities like advanced analytics, DevOps integrations, and comprehensive access management features into a single cloud-native solution. Adaptive Application Controls leverages machine learning to give users personalized recommendations for whitelisting applications. Just-in-Time VM Access protects cloud infrastructure from brute force attacks by reducing access when virtual machines are not needed. Key Features: Unified security management. Microsoft’s security platform offers visibility both into cloud workflows and non-cloud assets. It can map your hybrid network and enable proactive threat detection across the enterprise tech stack. Continuous security assessments. The platform supports automated security assessments for network assets, services, and applications. It triggers alerts notifying administrators when vulnerabilities are detected. Infrastructure-as-a-service (IaaS) compatibility. Microsoft enables customers to extend visibility and protection to the IaaS layer, providing uniform security and control across hybrid networks. What Do People Say About Microsoft Azure Security Center? Customers praise Microsoft’s hybrid cloud security solution for its user-friendly interface and integration capabilities. However, many users complain about false positives. These may be the result of security tool misconfigurations that lead to unnecessary disruptions and expensive investigations. 3. Amazon AWS Security Hub Amazon AWS Security Hub is a full-featured cloud security posture management solution that centralized security alerts and enables continuous monitoring of cloud infrastructure. It provides a detailed view of security alerts and compliance status across the hybrid environment. Security leaders can use Amazon AWS Security Hub to automate compliance checks, and manage their security posture through a centralized solution. It provides extensive API support and can integrate with a wide variety of additional tools. Key Features: Automated best practice security checks. AWS can continuously check your security practices against a well-maintained set of standards developed by Amazon security experts. Excellent data visualization capabilities. Administrators can customize the Security Hub dashboard according to specific compliance requirements and generate custom reports to demonstrate security performance. Uniform formatting for security findings. AWS uses its own format — the AWS Security Findings Format (ASFF) — to eliminate the need to normalize data across multiple tools and platforms. What Do People Say About Amazon AWS Security Hub? Amazon’s Security Hub is an excellent choice for native cloud security posture management, providing granular control and easy compliance. However, the platform’s complexity and lack of visibility does not resonate well with all customers. Some organizations will need to spend considerable time and effort building comprehensive security reports. 4. Google Cloud Security Command Center Google’s centralized platform helps administrators identify and remediate security risks in Google Cloud and hybrid environments. It is designed to identify misconfigurations and vulnerabilities while making it easier for security leaders to manage regulatory compliance. Some of the key features it offers include real-time threat detection, security health analytics, and risk assessment tools. Google can also simulate the attack path that threat actors might use to compromise cloud networks. Key Features: Multiple service tiers. The standard service tier provides security health analytics and alerts, while the premium tier offers attack path simulations and event threat detection capabilities. AI-generated summaries. Premium subscribers can read dynamically generated summaries of security findings and attack paths in natural language, reducing this technology’s barrier to entry. Cloud infrastructure entitlement management. Google’s platform supports cloud infrastructure entitlement management, which exposes misconfigurations at the principal account level from an identity-based framework What Do People Say About Google Cloud Security Command Center? Customers applaud the feature included in Google’s premium tier for this service, but complain that it can be hard to get. Not all organizations meet the requirements necessary to use this platform’s most advanced features. Once properly implemented and configured, however, it provides state-of-the-art cloud security that integrates well with Google-centric workflows. 5. IBM Cloud Pak for Security IBM’s cloud security service connects disparate data sources across hybrid and multi-cloud environments to uncover hidden threats. It allows hybrid organizations to advance Zero Trust strategies without compromising on operational security. IBM provides its customers with AI-driven insights, seamless integrations with existing IT environments, and data protection capabilities. It’s especially well-suited for enterprise organizations that want to connect public cloud services with legacy technology deployments that are difficult or expensive to modify. Key Features : Open security. This platform is designed to integrate easily with existing security applications, making it easy for customers to scale their security tech stack and improve policy standards across the enterprise. Improved data stewardship. IBM doesn’t require customers to move their data from one place to another. This makes compliance much easier to manage, especially in complex enterprise environments. Threat intelligence integrations. Customers can integrate IBM Cloud Pak with IBM Threat Intelligence Insights to get detailed and actionable insights delivered to cloud security teams. What Do People Say About IBM Cloud Pak? IBM Cloud Pak helps connect security teams and administrators to the content they need in real time. However, it’s a complicated environment with a significant amount of legacy code, well-established workarounds, and secondary components. This impacts usability and makes it less accessible than other entries on this list. 6. Palo Alto Networks Prisma Cloud Palo Alto Networks offers comprehensive cloud-native security across multi-cloud and hybrid environments to customers. Prisma Cloud reduces risk and prevents security breaches at multiple points in the application lifecycle. Some of the key features this solution includes are continuous monitoring, API security, and vulnerability management. It provides comprehensive visibility and control to security leaders managing extensive hybrid cloud deployments. Key Features: Hardens CI/CD pipelines. This solution includes robust features for reducing the attack surface of application development environments and protecting CI/CD pipelines. Secures infrastructure-as-code (IaC) deployments. Extensive coverage for detecting and resolving misconfigurations in IaC templates like Terraform, Kubernetes, ARM, and CloudFormation. Provides context-aware prioritization. Palo Alto Networks addresses open source vulnerabilities and license compliance problems contextually, bringing attention to the most important issues first. What Do People Say About Palo Alto Networks Prisma Cloud? Palo Alto Networks is highly regarded as an enterprise security leader. Many customers praise its products, and Prisma Cloud is no different. However, it comes with a very high price tag that many organizations simply can’t afford. This is especially true when additional integration and implementation costs are factored in. Additionally, some customers have complained about the lack of embedded Identity and Access Management (IAM) controls in the solution. Optimize Hybrid Cloud Security with AlgoSec Security leaders must continually adapt their security deployments to meet evolving cybersecurity threats in hybrid cloud environments. As the threat landscape changes, the organization’s policies and capabilities must adjust to meet new demands. Achieving this level of flexibility is not easy with purely manual configuration and policy workflows. Human error is a major element in many data breaches, and organizations must develop security best practices that address that risk. Implementing the right cloud security platform can make a significant difference when it comes to securing complex hybrid cloud deployments. The ability to simulate in-depth configuration changes and automate the deployment of those changes across the entire environment offers significant advantages to operational security. Consider making AlgoSec your cybersecurity co-pilot for identifying vulnerabilities and addressing security gaps. Avoid costly misconfigurations and leverage intelligent automation to make your hybrid cloud environment more secure than ever before. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | The Application Migration Checklist
All organizations eventually inherit outdated technology infrastructure. As new technology becomes available, old apps and services... Firewall Change Management The Application Migration Checklist Asher Benbenisty 2 min read Asher Benbenisty Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 10/25/23 Published All organizations eventually inherit outdated technology infrastructure. As new technology becomes available, old apps and services become increasingly expensive to maintain. That expense can come in a variety of forms: Decreased productivity compared to competitors using more modern IT solutions. Greater difficulty scaling IT asset deployments and managing the device life cycle . Security and downtime risks coming from new vulnerabilities and emerging threats. Cloud computing is one of the most significant developments of the past decade. Organizations are increasingly moving their legacy IT assets to new environments hosted on cloud services like Amazon Web Services or Microsoft Azure. Cloud migration projects enable organizations to dramatically improve productivity, scalability, and security by transforming on-premises applications to cloud-hosted solutions. However, cloud migration projects are among the most complex undertakings an organization can attempt. Some reports state that nine out of ten migration projects experience failure or disruption at some point, and only one out of four meet their proposed deadlines. The better prepared you are for your application migration project , the more likely it is to succeed. Keep the following migration checklist handy while pursuing this kind of initiative at your company. Step 1: Assessing Your Applications The more you know about your legacy applications and their characteristics, the more comprehensive you can be with pre-migration planning. Start by identifying the legacy applications that you want to move to the cloud. Pay close attention to the dependencies that your legacy applications have. You will need to ensure the availability of those resources in an IT environment that is very different from the typical on-premises data center. You may need to configure cloud-hosted resources to meet specific needs that are unique to your organization and its network architecture. Evaluate the criticality of each legacy application you plan on migrating to the cloud. You will have to prioritize certain applications over others, minimizing disruption while ensuring the cloud-hosted infrastructure can support the workload you are moving to. There is no one-size-fits-all solution to application migration. The inventory assessment may bring new information to light and force you to change your initial approach. It’s best that you make these accommodations now rather than halfway through the application migration project. Step 2: Choosing the Right Migration Strategy Once you know what applications you want to move to the cloud and what additional dependencies must be addressed for them to work properly, you’re ready to select a migration strategy. These are generalized models that indicate how you’ll transition on-premises applications to cloud-hosted ones in the context of your specific IT environment. Some of the options you should gain familiarity with include: Lift and Shift (Rehosting). This option enables you to automate the migration process using tools like CloudEndure Migration, AWS VM Import/Export, and others. The lift and shift model is well-suited to organizations that need to migrate compatible large-scale enterprise applications without too many additional dependencies, or organizations that are new to the cloud. Replatforming. This is a modified version of the lift and shift model. Essentially, it introduces an additional step where you change the configuration of legacy apps to make them better-suited to the cloud environment. By adding a modernization phase to the process, you can leverage more of the cloud’s unique benefits and migrate more complex apps. Refactoring/Re-architecting. This strategy involves rewriting applications from scratch to make them cloud-native. This allows you to reap the full benefits of cloud technology. Your new applications will be scalable, efficient, and agile to the maximum degree possible. However, it’s a time-consuming, resource-intensive project that introduces significant business risk into the equation. Repurchasing. This is where the organization implements a fully mature cloud architecture as a managed service. It typically relies on a vendor offering cloud migration through the software-as-a-service (SaaS) model. You will need to pay licensing fees, but the technical details of the migration process will largely be the vendor’s responsibility. This is an easy way to add cloud functionality to existing business processes, but it also comes with the risk of vendor lock-in. Step 3: Building Your Migration Team The success of your project relies on creating and leading a migration team that can respond to the needs of the project at every step. There will be obstacles and unexpected issues along the way – a high-quality team with great leadership is crucial for handling those problems when they arise. Before going into the specifics of assembling a great migration team, you’ll need to identify the key stakeholders who have an interest in seeing the project through. This is extremely important because those stakeholders will want to see their interests represented at the team level. If you neglect to represent a major stakeholder at the team level, you run the risk of having major, expensive project milestones rejected later on. Not all stakeholders will have the same level of involvement, and few will share the same values and goals. Managing them effectively means prioritizing the values and goals they represent, and choosing team members accordingly. Your migration team will consist of systems administrators, technical experts, and security practitioners, and include input from many other departments. You’ll need to formalize a system of communicating inside the core team and messaging stakeholders outside of it. You may also wish to involve end users as a distinct part of your migration team and dedicate time to addressing their concerns throughout the process. Keep team members’ stakeholder alignments and interests in mind when assigning responsibilities. For example, if a particular configuration step requires approval from the finance department, you’ll want to make sure that someone representing that department is involved from the beginning. Step 4: Creating a Migration Plan It’s crucial that every migration project follows a comprehensive plan informed by the needs of the organization itself. Organizations pursue cloud migration for many different reasons – your plan should address the problems you expect cloud-hosted technology to solve. This might mean focusing on reducing costs, enabling entry into a new market, or increasing business agility – or all three. You may have additional reasons for pursuing an application migration plan. This plan should also include data mapping . Choosing the right application performance metrics now will help make the decision-making process much easier down the line. Some of the data points that cloud migration specialists recommend capturing include: Duration highlights the value of employee labor-hours as they perform tasks throughout the process. Operational duration metrics can tell you how much time project managers spend planning the migration process, or whether one phase is taking much longer than another, and why. Disruption metrics can help identify user experience issues that become obstacles to onboarding and full adoption. Collecting data about the availability of critical services and the number of service tickets generated throughout the process can help you gauge the overall success of the initiative from the user’s perspective. Cost includes more than data transfer rates. Application migration initiatives also require creating dependency mappings, changing applications to make them cloud-native, and significant administrative costs. Up to 50% of your migration’s costs pay for labor , and you’ll want to keep close tabs on those costs as the process goes on. Infrastructure metrics like CPU usage, memory usage, network latency, and load balancing are best captured both before and after the project takes place. This will let you understand and communicate the value of the project in its entirety using straightforward comparisons. Application performance metrics like availability figures, error rates, time-outs and throughput will help you calculate the value of the migration process as a whole. This is another post-cloud migration metric that can provide useful before-and-after data. You will also want to establish a series of cloud service-level agreements (SLAs) that ensure a predictable minimum level of service is maintained. This is an important guarantee of the reliability and availability of the cloud-hosted resources you expect to use on a daily basis. Step 5: Mapping Dependencies Mapping dependencies completely and accurately is critical to the success of any migration project. If you don’t have all the elements in your software ecosystem identified correctly, you won’t be able to guarantee that your applications will work in the new environment. Application dependency mapping will help you pinpoint which resources your apps need and allow you to make those resources available. You’ll need to discover and assess every workload your organization undertakes and map out the resources and services it relies on. This process can be automated, which will help large-scale enterprises create accurate maps of complex interdependent processes. In most cases, the mapping process will reveal clusters of applications and services that need to be migrated together. You will have to identify the appropriate windows of opportunity for performing these migrations without disrupting the workloads they process. This often means managing data transfer and database migration tasks and carrying them out in a carefully orchestrated sequence. You may also discover connectivity and VPN requirements that need to be addressed early on. For example, you may need to establish protocols for private access and delegate responsibility for managing connections to someone on your team. Project stakeholders may have additional connectivity needs, like VPN functionality for securing remote connections. These should be reflected in the application dependency mapping process. Multi-cloud compatibility is another issue that will demand your attention at this stage. If your organization plans on using multiple cloud providers and configuring them to run workloads specific to their platform, you will need to make sure that the results of these processes are communicated and stored in compatible formats. Step 6: Selecting a Cloud Provider Once you fully understand the scope and requirements of your application migration project, you can begin comparing cloud providers. Amazon, Microsoft, and Google make up the majority of all public cloud deployments, and the vast majority of organizations start their search with one of these three. Amazon AW S has the largest market share, thanks to starting its cloud infrastructure business several years before its major competitors did. Amazon’s head start makes finding specialist talent easier, since more potential candidates will have familiarity with AWS than with Azure or Google Cloud. Many different vendors offer services through AWS, making it a good choice for cloud deployments that rely on multiple services and third-party subscriptions. Microsoft Azure has a longer history serving enterprise customers, even though its cloud computing division is smaller and younger than Amazon’s. Azure offers a relatively easy transition path that helps enterprise organizations migrate to the cloud without adding a large number of additional vendors to the process. This can help streamline complex cloud deployments, but also increases your reliance on Microsoft as your primary vendor. Google Cloud is the third runner-up in terms of market share. It continues to invest in cloud technologies and is responsible for a few major innovations in the space – like the Kubernetes container orchestration system. Google integrates well with third-party applications and provides a robust set of APIs for high-impact processes like translation and speech recognition. Your organization’s needs will dictate which of the major cloud providers offers the best value. Each provider has a different pricing model, which will impact how your organization arrives at a cost-effective solution. Cloud pricing varies based on customer specifications, usage, and SLAs, which means no single provider is necessarily “the cheapest” or “the most expensive” – it depends on the context. Additional cost considerations you’ll want to take into account include scalability and uptime guarantees. As your organization grows, you will need to expand its cloud infrastructure to accommodate more resource-intensive tasks. This will impact the cost of your cloud subscription in the future. Similarly, your vendor’s uptime guarantee can be a strong indicator of how invested it is in your success. Given all vendors work on the shared responsibility model, it may be prudent to consider an enterprise data backup solution for peace of mind. Step 7: Application Refactoring If you choose to invest time and resources into refactoring applications for the cloud, you’ll need to consider how this impacts the overall project. Modifying existing software to take advantage of cloud-based technologies can dramatically improve the efficiency of your tech stack, but it will involve significant risk and up-front costs. Some of the advantages of refactoring include: Reduced long-term costs. Developers refactor apps with a specific context in mind. The refactored app can be configured to accommodate the resource requirements of the new environment in a very specific manner. This boosts the overall return of investing in application refactoring in the long term and makes the deployment more scalable overall. Greater adaptability when requirements change . If your organization frequently adapts to changing business requirements, refactored applications may provide a flexible platform for accommodating unexpected changes. This makes refactoring attractive for businesses in highly regulated industries, or in scenarios with heightened uncertainty. Improved application resilience . Your cloud-native applications will be decoupled from their original infrastructure. This means that they can take full advantage of the benefits that cloud-hosted technology offers. Features like low-cost redundancy, high-availability, and security automation are much easier to implement with cloud-native apps. Some of the drawbacks you should be aware of include: Vendor lock-in risks . As your apps become cloud-native, they will naturally draw on cloud features that enhance their capabilities. They will end up tightly coupled to the cloud platform you use. You may reach a point where withdrawing those apps and migrating them to a different provider becomes infeasible, or impossible. Time and talent requirements . This process takes a great deal of time and specialist expertise. If your organization doesn’t have ample amounts of both, the process may end up taking too long and costing too much to be feasible. Errors and vulnerabilities . Refactoring involves making major changes to the way applications work. If errors work their way in at this stage, it can deeply impact the usability and security of the workload itself. Organizations can use cloud-based templates to address some of these risks, but it will take comprehensive visibility into how applications interact with cloud security policies to close every gap. Step 8: Data Migration There are many factors to take into consideration when moving data from legacy applications to cloud-native apps. Some of the things you’ll need to plan for include: Selecting the appropriate data transfer method . This depends on how much time you have available for completing the migration, and how well you plan for potential disruptions during the process. If you are moving significant amounts of data through the public internet, sidelining your regular internet connection may be unwise. Offline transfer doesn’t come with this risk, but it will include additional costs. Ensuring data center compatibility. Whether transferring data online or offline, compatibility issues can lead to complex problems and expensive downtime if not properly addressed. Your migration strategy should include a data migration testing strategy that ensures all of your data is properly formatted and ready to use the moment it is introduced to the new environment. Utilizing migration tools for smooth data transfer . The three major cloud providers all offer cloud migration tools with multiple tiers and services. You may need to use these tools to guarantee a smooth transfer experience, or rely on a third-party partner for this step in the process. Step 9: Configuring the Cloud Environment By the time your data arrives in its new environment, you will need to have virtual machines and resources set up to seamlessly take over your application workloads and processes. At the same time, you’ll need a comprehensive set of security policies enforced by firewall rules that address the risks unique to cloud-hosted infrastructure. As with many other steps in this checklist, you’ll want to carefully assess, plan, and test your virtual machine deployments before deploying them in a live production environment. Gather information about your source and target environment and document the workloads you wish to migrate. Set up a test environment you can use to make sure your new apps function as expected before clearing them for live production. Similarly, you may need to configure and change firewall rules frequently during the migration process. Make sure that your new deployments are secured with reliable, well-documented security policies. If you skip the documentation phase of building your firewall policy, you run the risk of introducing security vulnerabilities into the cloud environment, and it will be very difficult for you to identify and address them later on. You will also need to configure and deploy network interfaces that dictate where and when your cloud environment will interact with other networks, both inside and outside your organization. This is your chance to implement secure network segmentation that protects mission-critical assets from advanced and persistent cyberattacks. This is also the best time to implement disaster recovery mechanisms that you can rely on to provide business continuity even if mission-critical assets and apps experience unexpected downtime. Step 10: Automating Workflows Once your data and apps are fully deployed on secure cloud-hosted infrastructure, you can begin taking advantage of the suite of automation features your cloud provider offers. Depending on your choice of migration strategy, you may be able to automate repetitive tasks, streamline post-migration processes, or enhance the productivity of entire departments using sophisticated automation tools. In most cases, automating routine tasks will be your first priority. These automations are among the simplest to configure because they largely involve high-volume, low-impact tasks. Ideally, these tasks are also isolated from mission-critical decision-making processes. If you established a robust set of key performance indicators earlier on in the migration project, you can also automate post-migration processes that involve capturing and reporting these data points. Your apps will need to continue ingesting and processing data, making data validation another prime candidate for workflow automation. Cloud-native apps can ingest data from a wide range of sources, but they often need some form of validation and normalization to produce predictable results. Ongoing testing and refinement will help you make the most of your migration project moving forward. How AlgoSec Enables Secure Application Migration Visibility and Di scovery : AlgoSec provide s comprehensive visibility into your existing on-premises network environment. It automatically discovers all network devices, applications, and their dependencies. This visibility is crucial when planning a secure migration, ensuring no critical elements get overlooked in the process. Application Dependency Mapping : AlgoSec’s application dependency mapping capabilities allow you to understand how different applications and services interact within your network. This knowledge is vital during migration to avoid disrupting critical dependencies. Risk Assessment : AlgoSec assesses the security and compliance risks associated with your migration plan. It identifies potential vulnerabilities, misconfigurations, and compliance violations that could impact the security of the migrated applications. Security Policy Analysis : Before migrating, AlgoSec helps you analyze your existing security policies and rules. It ensures that security policies are consistent and effective in the new cloud or data center environment. Misconfigurations and unnecessary rules can be eliminated, reducing the attack surface. Automated Rule Optimiz ation : AlgoSec automates the o ptimization of security rules. It identifies redundant rules, suggests rule consolidations, and ensures that only necessary traffic is allowed, helping you maintain a secure environment during migration. Change Management : During the migration process, changes to security policies and firewall rules are often necessary. AlgoSec facilitates change management by providing a streamlined process for requesting, reviewing, and implementing rule changes. This ensures that security remains intact throughout the migration. Compliance and Governance : AlgoSec helps maintain compliance with industry regulations and security best practices. It generates compliance reports, ensures rule consistency, and enforces security policies, even in the new cloud or data center environment. Continuous Monitoring and Auditing : Post-migration, AlgoSec continues to monitor and audit your security policies and network traffic. It alerts you to any anomalies or security breaches, ensuring the ongoing security of your migrated applications. Integration with Cloud Platforms : AlgoSec integrates seamlessly with various cloud platforms such as AWS , Microsoft Azure , and Google Cloud . This ensures that security policies are consistently applied in both on-premises and cloud environments, enabling a secure hybrid or multi-cloud setup. Operational Efficiency : AlgoSec’s automation capabilities reduce manual tasks, improving operational efficiency. This is essential during the migration process, where time is often of the essence. Real-time Visibility and Control : AlgoSec provides real-time visibility and control over your security policies, allowing you to adapt quickly to changing migration requirements and security threats. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | 20 Firewall Management Best Practices for Network Security
Firewalls are one of the most important cybersecurity solutions in the enterprise tech stack. They can also be the most demanding.... Firewall Change Management 20 Firewall Management Best Practices for Network Security Asher Benbenisty 2 min read Asher Benbenisty Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 10/29/23 Published Firewalls are one of the most important cybersecurity solutions in the enterprise tech stack. They can also be the most demanding. Firewall management is one of the most time-consuming tasks that security teams and network administrators regularly perform. The more complex and time-consuming a task is, the easier it is for mistakes to creep in. Few organizations have established secure network workflows that include comprehensive firewall change management plans and standardized firewall best practices. This makes implementing policy changes and optimizing firewall performance riskier than it needs to be. According to the 2023 Verizon Data Breach Investigation Report, security misconfigurations are responsible for one out of every ten data breaches. ( * ) This includes everything from undetected exceptions in the firewall rule base to outright policy violations by IT security teams. It includes bad firewall configuration changes, routing issues, and non-compliance with access control policies. Security management leaders need to pay close attention to the way their teams update firewall rules, manipulate firewall logs, and establish audit trails. Organizations that clean up their firewall management policies will be better equipped to automate policy enforcement, troubleshooting, and firewall migration. 20 Firewall Management Best Practices Right Now 1. Understand how you arrived at your current firewall policies: Most security leaders inherit someone else’s cybersecurity tech stack the moment they accept the job. One of the first challenges is discovering the network and cataloging connected assets. Instead of simply mapping network architecture and cataloging assets, go deeper. Try to understand the reasoning behind the current rule set. What cyber threats and vulnerabilities was the organization’s previous security leader preparing for? What has changed since then? 2. Implement multiple firewall layers: Layer your defenses by using multiple types of firewalls to create a robust security posture. Configure firewalls to address specific malware risks and cyberattacks according to the risk profile of individual private networks and subnetworks in your environment. This might require adding new firewall solutions, or adding new rules to existing ones. You may need to deploy and manage perimeter, internal, and application-level firewalls separately, and centralize control over them using a firewall management tool. 3. Regularly update firewall rules: Review and update firewall rules regularly to ensure they align with your organization’s needs. Remove outdated or unnecessary rules to reduce potential attack surfaces. Pay special attention to areas where firewall rules may overlap. Certain apps and interfaces may be protected by multiple firewalls with conflicting rules. At best, this reduces the efficiency of your firewall fleet. At worst, it can introduce security vulnerabilities that enable attackers to bypass firewall rules. 4. Apply the principle of least privilege: Apply the principle of least privilege when creating firewall rules . Only grant access to resources that are necessary for specific roles or functions. Remember to remove access from users who no longer need it. This is difficult to achieve with simple firewall tools. You may need policies that can follow users and network assets even as their IP addresses change. Next-generation firewalls are capable of enforcing identity-based policies like this. If your organization’s firewall configuration is managed by an outside firm, that doesn’t mean it automatically applies this principle correctly. Take time to review your policies and ensure no users have unjustified access to critical network resources. . 5. Use network segmentation to build a multi-layered defense: Use network segmentation to isolate different parts of your network. This will make it easier to build and enforce policies that apply the principle of least privilege. If attackers compromise one segment of the network, you can easily isolate that segment and keep the rest secure. Pay close attention to the inbound and outbound traffic flows. Some network segments need to accept flows going in both directions, but many do not. Properly segmented networks deny network traffic traveling along unnecessary routes. You may even decide to build two entirely separate networks – one for normal operations and one for management purposes. If the networks are served by different ISPs, an attack against one may not lead to an attack against the other. Administrators may be able to use the other network to thwart an active cyberattack. 6. Log and monitor firewall activity: Enable firewall logging and regularly review logs for suspicious activities. Implement automated alerts for critical events. Make sure you store firewall logs in an accessible low-cost storage space while still retaining easy access to them when needed. You should be able to pull records like source IP addresses on an as-needed basis. Consider implementing a more comprehensive security information and event management (SIEM) platform. This allows you to capture and analyze log data from throughout your organization in a single place. Analysts can detect and respond to threats more effectively in a SIEM-enabled environment. Consider enabling logging on all permit/deny rules. This will provide you with evidence of network intrusion and help with troubleshooting. It also allows you to use automated tools to optimize firewall configuration based on historical traffic. 7. Regularly test and audit firewall performance: Conduct regular security assessments and penetration tests to identify vulnerabilities. Perform security audits to ensure firewall configurations are in compliance with your organization’s policies. Make sure to preview the results of any changes you plan on making to your organization’s firewall rules. This can be a very complex and time-consuming task. Growing organizations will quickly run out of time and resources to effectively test firewall configuration changes over time. Consider using a firewall change management platform to automate the process. 8. Patch and update firewall software frequently: Keep firewall firmware and software up to date with security patches. Vulnerabilities in outdated software can be exploited, and many hackers actively read update changelogs looking for new exploits. Even a few days’ delay can be enough for enterprising cybercriminals to launch an attack. Like most software updates, firewall updates may cause compatibility issues. Consider implementing a firewall management tool that allows you to preview changes and proactively troubleshoot compatibility issues before downloading updates. 9. Make sure you have a reliable backup configuration: Regularly backup firewall configurations. This ensures you can quickly restore settings in case of a failure or compromise. If attackers exploit a vulnerability that allows them to disable your firewall system, restoring an earlier version may be the fastest way to remediate the attack. When scheduling backups, pay special attention to Recovery Point Objectives (RPO) and Recovery Time Objectives (RTO). RPO is the amount of time you can afford to let pass between backups. RTO is the amount of time it takes to fully restore the compromised system. 10. Deploy a structured change management process: Implement a rigorous change management process for firewall rule modifications. Instead of allowing network administrators and IT security teams to enact ad-hoc changes, establish a proper approval process that includes documenting all changes implemented. This can slow down the process of implementing firewall policy changes and enforcing new rules. However, it makes it much easier to analyze firewall performance over time and generate audit trails after attacks occur. Organizations that automate the process can enjoy both well-documented changes and rapid implementation. 11. Implement intrusion detection and prevention systems (IDPS): Use IDPS in conjunction with firewalls to detect and prevent suspicious or malicious traffic. IDPS works in conjunction with properly configured firewalls to improve enterprise-wide security and enable security teams to detect malicious behavior. Some NGFW solutions include built-in intrusion and detection features as part of their advanced firewall technology. This gives security leaders the ability to leverage both prevention and detection-based security from a single device. 12. Invest in user training and awareness: Train employees on safe browsing habits and educate them about the importance of firewall security. Make sure they understand the cyber threats that firewalls are designed to keep out, and how firewall rules contribute to their own security and safety. Most firewalls can’t prevent attacks that exploit employee negligence. Use firewall training to cultivate a security-oriented office culture that keeps employees vigilant against identity theft , phishing attacks, social engineering, and other cyberattack vectors. Encourage employees to report unusual behavior to IT security team members even if they don’t suspect an attack is underway. 13. Configure firewalls for redundancy and high availability: Design your network with redundancy and failover mechanisms to ensure continuous protection in case of hardware or software failures. Multiple firewalls can work together to seamlessly take over when one goes offline, making it much harder for attackers to capitalize on firewall downtime. Designate high availability firewalls – or firewall clusters – to handle high volume traffic subject to a wide range of security threats. Public-facing servers handling high amounts of inbound traffic typically need extra protection compared to internal assets. Rule-based traffic counters can provide valuable insight into which rules activate the most often. This can help prioritize the most important rules in high-volume usage scenarios. 14. Develop a comprehensive incident response plan: Develop and regularly update an incident response plan that includes firewall-specific procedures for handling security incidents. Plan for multiple different scenarios and run drills to make sure your team is prepared to respond to the real thing when it comes. Consider using security orchestration, automation, and response (SOAR) solutions to create and run automatic incident response playbooks. These playbooks can execute with a single click, instantly engaging additional protections in response to security threats when detected. Be ready for employees and leaders to scrutinize firewall deployments when incidents occur. It’s not always clear whether the source of the issue was the firewall or not. Get ahead of the problem by using a packet analyzer to find out if firewall misconfiguration led to the incident or not early on. 15. Stay ahead of compliance and security regulations: Stay compliant with relevant industry regulations and standards, such as GDPR , HIPAA, or PCI DSS , which may have specific firewall requirements. Be aware of changes and updates to regulatory compliance needs. In an acquisition-oriented enterprise environment, managing compliance can be very difficult. Consider implementing a firewall management platform that provides a centralized view of your entire network environment so you can quickly identify underprotected networks. 16. Don’t forget about documentation: Maintain detailed documentation of firewall configurations, network diagrams, and security policies for reference and auditing purposes. Keep these documents up-to-date so that new and existing team members can use them for reference whenever they need to interact with the organization’s firewall solutions. Network administrators and IT security team members aren’t always the most conscientious documentation creators. Consider automating the process and designating a special role for maintaining and updating firewall documentation throughout the organization. 17. Regularly review and improve firewall performance: Continuously evaluate and improve your firewall management practices based on evolving threats and changing business needs. Formalize an approach to reviewing, updating, and enforcing new rules using data gathered by your current deployment. This process requires the ability to preview policy changes and create complex “what-if” scenarios. Without a powerful firewall change management platform in place, manually conducting this research may be very difficult. Consider using automation to optimize firewall performance over time. 18. Deploy comprehensive backup connectivity: In case of a network failure, ensure there’s a backup connectivity plan in place to maintain essential services. Make sure the plan includes business continuity solutions for mission-critical services as well as security controls that maintain compliance. Consider multiple disaster scenarios that could impact business continuity. Security professionals typically focus on cyberattacks, but power outages, floods, earthquakes, and other natural phenomena can just as easily lead to data loss. Opportunistic hackers may take advantage of these events to strike when they think the organization’s guard is down. 19. Make sure secure remote access is guaranteed: If remote access to your network is required, use secure methods like VPNs and multi-factor authentication (MFA) for added protection. Make sure your firewall policies reflect the organization’s remote-enabled capabilities, and provide a secure environment for remote users to operate in. Consider implementing NGFW solutions that can reliably identify and manage inbound VPN connections without triggering false positives. Be especially wary of firewall rules that automatically deny connections without conducting deeper analysis to find out whether it was for legitimate user access. 20. Use group objects to simplify firewall rules: Your firewall analyzer allows you to create general rules and apply them to group objects, applying the rule to any asset in the group. This allows you to use the same rule set for similar policies impacting different network segments. You can even create a global policy that applies to the whole network and then refine that policy further as you go through each subnetwork. Be careful about nesting object groups inside one another. This might look like clean firewall management, but it can also create problems when the organization grows, and it can complicate change management. You may end up enforcing contradictory rules if your documentation practices can’t keep up. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Deconstructing the Complexity of Managing Hybrid Cloud Security
The move from traditional data centers to a hybrid cloud network environment has revolutionized the way enterprises construct their... Hybrid Cloud Security Management Deconstructing the Complexity of Managing Hybrid Cloud Security Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 4/4/22 Published The move from traditional data centers to a hybrid cloud network environment has revolutionized the way enterprises construct their networks, allowing them to reduce hardware and operational costs, scale per business needs and be more agile. When enterprises choose to implement a hybrid cloud model, security is often one of the primary concerns. The additional complexity associated with a hybrid cloud environment can, in turn, make securing resources to a single standard extremely challenging. This is especially true when it comes to managing the behavioral and policy nuances of business applications . Moreover, hybrid cloud security presents an even greater challenge when organizations are unable to fully control the lifecycle of the public cloud services they are using. For instance, when an organization is only responsible for hosting a portion of its business-critical workloads on the public cloud and has little to no control over the hosting provider, it is unlikely to be able to enforce consistent security standards across both environments. Managing hybrid cloud security Hybrid cloud security requires an extended period of planning and investment for enterprises to become secure. This is because hybrid cloud environments are inherently complex and typically involve multiple providers. To effectively manage these complex environments, organizations will require a comprehensive approach to security that addresses each of the following challenges: Strategic planning and oversight : Policy design and enforcement across hybrid clouds Managing multiple vendor relationships and third-party security controls : Cloud infrastructure security controls, security products provided by cloud and third-party providers and third-party on-premise security vendor products. Managing security-enabling technologies in multiple environments : on-premise, public cloud and private cloud. Managing multiple stakeholders : CISO, IT/Network Security, SecOps, DevOps and Cloud teams. Workflow automation : Auto responding to changing business demands requiring provisioning of policy changes automatically and securely across the hybrid cloud estate. Optimizing security and agility : Aligning risk tolerance with the DevOps teams to manage business application security and connectivity. With these challenges in mind, here are 5 steps you can take to effectively address hybrid cloud security challenges. Step 1. Define the security objectives A holistic approach to high availability is focused on the two critical elements of any hybrid cloud environment: technology and processes. Defining a holistic strategy in a hybrid cloud environment has these advantages: Improved operational availability : Ensure continuous application connectivity, data, and system availability across the hybrid estate. Reduced risk : Understand threats to business continuity from natural disasters or facility disruptions. Better recovery : Maintain data consistency by mirroring critical data between primary locations in case of failure at one site through multiple backup sites. Step 2. Visualize the entire network topology The biggest potential point of failure for hybrid cloud deployment is where the public cloud and private environment offerings meet. This can result in a visual gap often due to disparities between in-house security protocols and third-party security standards, precluding SecOps teams from securing the connectivity of business applications. The solution lies in gaining complete visibility across the entire hybrid cloud estate. This requires having the right solution in place that can help SecOps teams discover, track and migrate application connectivity without regard for the underlying infrastructure. Step 3. Use automation for adaptability and scalability The ability to adapt and scale on demand is one of the most significant advantages of a hybrid cloud environment. Invariably, when considering the range of benefits of a hybrid cloud, it is difficult to conceptualize the power of scaling on demand. Still, enterprises can enjoy tremendous benefits when they correctly implement automation that can respond on-demand to necessary changes. With the right change automation solution, change requests can be easily defined and pushed through the workflow without disrupting the existing network security policy rules or introducing new potential risks. Step 4. Minimize the learning curb According to a 2021 Global Knowledge and IT Skills report , 76% of IT decision-makers experience critical skills gaps in their teams. Hybrid cloud deployment is a complicated process, with the largest potential point of failure being where in-house security protocols and third-party standards interact. If this gap is not closed, malicious actors or malware could slip through it. Meeting this challenge requires a unification of all provisions made to policy changes so that SecOps teams can become familiar with them, regardless of any new device additions to the network security infrastructure. This would be applicable to provisions associated with policy changes across all firewalls, segments, zones, micro‐segments, security groups and zones, and within each business application. Step 5. Get compliant Compliance cannot be guaranteed when the enterprise cannot monitor all vendors and platforms or enforce their policies in a standard manner. This can be especially challenging when attempting to apply compliance standardizations across an infrastructure that consists of a multi-vendor hybrid network environment. To address this issue, enterprises must get their SecOps teams to shift their focus away from pure technology management and toward a larger scale view that ensures that their network security policies consistently comply with regulatory requirements across the entire hybrid cloud estate. Summary Hybrid cloud security presents a significant—and often overlooked—challenge for enterprises. This is because hybrid cloud environments are inherently complex, involving multiple providers, and impact how enterprises manage their business applications and overall IT assets. To learn how to reach your optimal hybrid cloud security solution, read more and find out how you can simplify your journey. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Bridging Network Security Gaps with Better Network Object Management
Prof. Avishai Wool, AlgoSec co-founder and CTO, stresses the importance of getting the often-overlooked function of managing network... Professor Wool Bridging Network Security Gaps with Better Network Object Management Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 4/13/22 Published Prof. Avishai Wool, AlgoSec co-founder and CTO, stresses the importance of getting the often-overlooked function of managing network objects right, particularly in hybrid or multi-vendor environments Using network traffic filtering solutions from multiple vendors makes network object management much more challenging. Each vendor has its own management platform, which often forces network security admins to define objects multiple times, resulting in a counter effect. First and foremost, this can be an inefficient use of valuable resources from a workload bottlenecking perspective. Secondly, it creates a lack of naming consistency and introduces a myriad of unexpected errors, leading to security flaws and connectivity problems. This can be particularly applicable when a new change request is made. With these unique challenges at play, it begs the question: Are businesses doing enough to ensure their network objects are synchronized in both legacy and greenfield environments? What is network object management? At its most basic, the management of network objects refers to how we name and define “objects” within a network. These objects can be servers, IP addresses, or groups of simpler objects. Since these objects are subsequently used in network security policies, it is imperative to simultaneously apply a given rule to an object or object group. On its own, that’s a relatively straightforward method of organizing the security policy. But over time, as organizations reach scale, they often end up with large quantities of network objects in the tens of thousands, which typically lead to critical mistakes. Hybrid or multi-vendor networks Let’s take name duplication as an example. Duplication on its own is bad enough due to the wasted resource, but what’s worse is when two copies of the same name have two distinctly different definitions. Let’s say we have a group of database servers in Environment X containing three IP addresses. This group is allocated a name, say “DBs”. That name is then used to define a group of database servers in Environment Y containing only two IP addresses because someone forgot to add in the third. In this example, the security policy rule using the name DBs would look absolutely fine to even a well-trained eye, because the names and definitions it contained would seem identical. But the problem lies in what appears below the surface: one of these groups would only apply to two IP addresses rather than three. As in this case, minor discrepancies are commonplace and can quickly spiral into more significant security issues if not dealt with in the utmost time-sensitive manner. It’s important to remember that accuracy is the name in this game. If a business is 100% accurate in the way it handles network object management, then it has the potential to be 100% efficient. The Bottom Line The security and efficiency of hybrid multi-vendor environments depend on an organization’s digital hygiene and network housekeeping. The naming and management of network objects aren’t particularly glamorous tasks. Having said that, everything from compliance and automation to security and scalability will be far more seamless and risk averse if taken care of correctly. To learn more about network object management and why it’s arguably more important now than ever before, watch our webcast on the subject or read more in our resource hub . Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Firewall Traffic Analysis: The Complete Guide
What is Firewall Traffic Analysis? Firewall traffic analysis (FTA) is a network security operation that grants visibility into the data... Firewall Policy Management Firewall Traffic Analysis: The Complete Guide Asher Benbenisty 2 min read Asher Benbenisty Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 10/24/23 Published What is Firewall Traffic Analysis? Firewall traffic analysis (FTA) is a network security operation that grants visibility into the data packets that travel through your network’s firewalls. Cybersecurity professionals conduct firewall traffic analysis as part of wider network traffic analysis (NTA) workflows. The traffic monitoring data they gain provides deep visibility into how attacks can penetrate your network and what kind of damage threat actors can do once they succeed. NTA vs. FTA Explained NTA tools provide visibility into things like internal traffic inside the data center, inbound VPN traffic from external users, and bandwidth metrics from Internet of Things (iOT) endpoints. They inspect on-premises devices like routers and switches, usually through a unified, vendor-agnostic interface. Network traffic analyzers do inspect firewalls, but might stop short of firewall-specific network monitoring and management. FTA tools focus more exclusively on traffic patterns through the organization’s firewalls. They provide detailed information on how firewall rules interact with traffic from different sources. This kind of tool might tell you how a specific Cisco firewall conducts deep packet inspection on a certain IP address, and provide broader metrics on how your firewalls operate overall. It may also provide change management tools designed to help you optimize firewall rules and security policies . Firewall Rules Overview Your firewalls can only protect against security threats effectively when they are equipped with an optimized set of rules. These rules determine which users are allowed to access network assets and what kind of network activity is allowed. They play a major role in enforcing network segmentation and enabling efficient network management. Analyzing device policies for an enterprise network is a complex and time-consuming task. Minor mistakes can lead to critical risks remaining undetected and expose network devices to cyberattacks. For this reason, many security leaders use automated risk management solutions that include firewall traffic analysis. These tools perform a comprehensive analysis of firewall rules and communicate the risks of specific rules across every device on the network. This information is important because it will inform the choices you make during real-time traffic analysis. Having a comprehensive view of your security risk profile allows you to make meaningful changes to your security posture as you analyze firewall traffic. Performing Real-Time Traffic Analysis AlgoSec Firewall Analyzer captures information on the following traffic types: External IP addresses Internal IP addresses (public and private, including NAT addresses) Protocols (like TCP/IP, SMTP, HTTP, and others) Port numbers and applications for sources and destinations Incoming and outgoing traffic Potential intrusions The platform also supports real-time network traffic analysis and monitoring. When activated, it will periodically inspect network devices for changes to their policy rules, object definitions, audit logs, and more. You can view the changes detected for individual devices and groups, and filter the results to find specific network activities according to different parameters. For any detected change, Firewall Analyzer immediately aggregates the following data points: Device – The device where the changes happened. Date/Time – The exact time when the change was made. Changed by – Tells you which administrator performed the change. Summary – Lists the network assets impacted by the change. Many devices supported by Firewall Analyzer are actually systems of devices that work together. You can visualize the relationships between these assets using the device tree format. This presents every device as a node in the tree, giving you an easy way to manage and view data for individual nodes, parents nodes, and global categories. For example, Firewall Analyzer might discover a redundant rule copied across every firewall in your network. If its analysis shows that the rule triggers frequently, it might recommend moving to a higher node on the device tree. If it turns out the rule never triggers, it may recommend adjusting the rule or deleting it completely. If the rule doesn’t trigger because it conflicts with another firewall rule, it’s clear that some action is needed. Importance of Visualization and Reporting Open source network analysis tools typically work through a command-line interface or a very simple graphic user interface. Most of the data you can collect through these tools must be processed separately before being communicated to non-technical stakeholders. High-performance firewall analysis tools like AlgoSec Firewall Analyzer provide additional support for custom visualizations and reports directly through the platform. Visualization allows non-technical stakeholders to immediately grasp the importance of optimizing firewall policies, conducting netflow analysis, and improving the organization’s security posture against emerging threats. For security leaders reporting to board members and external stakeholders, this can dramatically transform the success of security initiatives. AlgoSec Firewall Analyzer includes a Visualize tab that allows users to create custom data visualizations. You can save these visualizations individually or combine them into a dashboard. Some of the data sources you can use to create visualizations include: Interactive searches Saved searches Other saved visualizations Traffic Analysis Metrics and Reports Custom visualizations enhance reports by enabling non-technical audiences to understand complex network traffic metrics without the need for additional interpretation. Metrics like speed, bandwidth usage, packet loss, and latency provide in-depth information about the reliability and security of the network. Analyzing these metrics allows network administrators to proactively address performance bottlenecks, network issues, and security misconfigurations. This helps the organization’s leaders understand the network’s capabilities and identify the areas that need improvement. For example, an organization that is planning to migrate to the cloud must know whether its current network infrastructure can support that migration. The only way to guarantee this is by carefully measuring network performance and proactively mitigating security risks. Network traffic analysis tools should do more than measure simple metrics like latency. They need to combine latency into complex performance indicators that show how much latency is occuring, and how network conditions impact those metrics. That might include measuring the variation in delay between individual data packets (jitter), Packet Delay Variation (PDV), and others. With the right automated firewall analysis tool, these metrics can help you identify and address security vulnerabilities as well. For example, you could automate the platform to trigger alerts when certain metrics fall outside safe operating parameters. Exploring AlgoSec’s Network Traffic Analysis Tool AlgoSec Firewall Analyzer provides a wide range of operations and optimizations to security teams operating in complex environments. It enables firewall performance improvements and produces custom reports with rich visualizations demonstrating the value of its optimizations. Some of the operations that Firewall Analyzer supports include: Device analysis and change tracking reports. Gain in-depth data on device policies, traffic, rules, and objects. It analyzes the routing table that produces a connectivity diagram illustrating changes from previous reports on every device covered. Traffic and routing queries. Run traffic simulations on specific devices and groups to find out how firewall rules interact in specific scenarios. Troubleshoot issues that emerge and use the data collected to prevent disruptions to real-world traffic. This allows for seamless server IP migration and security validation. Compliance verification and reporting. Explore the policy and change history of individual devices, groups, and global categories. Generate custom reports that meet the requirements of corporate regulatory standards like Sarbanes-Oxley, HIPAA, PCI DSS, and others. Rule cleanup and auditing. Identify firewall rules that are either unused, timed out, disabled, or redundant. Safely remove rules that fail to improve your security posture, improving the efficiency of your firewall devices. List unused rules, rules that don’t conform to company policy, and more. Firewall Analyzer can even re-order rules automatically, increasing device performance while retaining policy logic. User notifications and alerts. Discover when unexpected changes are made and find out how those changes were made. Monitor devices for rule changes and send emails to pre-assigned users with device analyses and reports. Network Traffic Analysis for Threat Detection and Response By monitoring and inspecting network traffic patterns, firewall analysis tools can help security teams quickly detect and respond to threats. Layer on additional technologies like Intrusion Detection Systems (IDS), Network Detection and Response (NDR), and Threat Intelligence feeds to transform network analysis into a proactive detection and response solution. IDS solutions can examine packet headers, usage statistics, and protocol data flows to find out when suspicious activity is taking place. Network sensors may monitor traffic that passes through specific routers or switches, or host-based intrusion detection systems may monitor traffic from within a host on the network. NDR solutions use a combination of analytical techniques to identify security threats without relying on known attack signatures. They continuously monitor and analyze network traffic data to establish a baseline of normal network activity. NDR tools alert security teams when new activity deviates too far from the baseline. Threat intelligence feeds provide live insight on the indicators associated with emerging threats. This allows security teams to associate observed network activities with known threats as they develop in real-time. The best threat intelligence feeds filter out the huge volume of superfluous threat data that doesn’t pertain to the organization in question. Firewall Traffic Analysis in Specific Environments On-Premises vs. Cloud-hosted Environments Firewall traffic analyzers exist in both on-premises and cloud-based forms. As more organizations migrate business-critical processes to the cloud, having a truly cloud-native network analysis tool is increasingly important. The best of these tools allow security teams to measure the performance of both on-premises and cloud-hosted network devices, gathering information from physical devices, software platforms, and the infrastructure that connects them. Securing the Internet of Things It’s also important that firewall traffic analysis tools take Internet of Things (IoT) devices in consideration. These should be grouped separately from other network assets and furnished with firewall rules that strictly segment them. Ideally, if threat actors compromise one or more IoT devices, network segmentation won’t allow the attack to spread to other parts of the network. Conducting firewall analysis and continuously auditing firewall rules ensures that the barriers between network segments remain viable even if peripheral assets (like IoT devices) are compromised. Microsoft Windows Environments Organizations that rely on extensive Microsoft Windows deployments need to augment the built-in security capabilities that Windows provides. On its own, Windows does not offer the kind of in-depth security or visibility that organizations need. Firewall traffic analysis can play a major role helping IT decision-makers deploy technologies that improve the security of their Windows-based systems. Troubleshooting and Forensic Analysis Firewall analysis can provide detailed information into the causes of network problems, enabling IT professionals to respond to network issues more quickly. There are a few ways network administrators can do this: Analyzing firewall logs. Log data provides a wealth of information on who connects to network assets. These logs can help network administrators identify performance bottlenecks and security vulnerabilities that would otherwise go unnoticed. Investigating cyberattacks. When threat actors successfully breach network assets, they can leave behind valuable data. Firewall analysis can help pinpoint the vulnerabilities they exploited, providing security teams with the data they need to prevent future attacks. Conducting forensic analysis on known threats. Network traffic analysis can help security teams track down ransomware and malware attacks. An organization can only commit resources to closing its security gaps after a security professional maps out the killchain used by threat actors to compromise network assets. Key Integrations Firewall analysis tools provide maximum value when integrated with other security tools into a coherent, unified platform. Security information and event management (SIEM) tools allow you to orchestrate network traffic analysis automations with machine learning-enabled workflows to enable near-instant detection and response. Deploying SIEM capabilities in this context allows you to correlate data from different sources and draw logs from devices across every corner of the organization – including its firewalls. By integrating this data into a unified, centrally managed system, security professionals can gain real-time information on security threats as they emerge. AlgoSec’s Firewall Analyzer integrates seamlessly with leading SIEM solutions, allowing security teams to monitor, share, and update firewall configurations while enriching security event data with insights gleaned from firewall logs. Firewall Analyzer uses a REST API to transmit and receive data from SIEM platforms, allowing organizations to program automation into their firewall workflows and manage their deployments from their SIEM. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | Achieving policy-driven application-centric security management for Cisco Nexus Dashboard Orchestrat
Jeremiah Cornelius, Technical Lead for Alliances and Partners at AlgoSec, discusses how Cisco Nexus Dashboard Orchestrator (NDO) users... Application Connectivity Management Achieving policy-driven application-centric security management for Cisco Nexus Dashboard Orchestrat Jeremiah Cornelius 2 min read Jeremiah Cornelius Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/2/24 Published Jeremiah Cornelius, Technical Lead for Alliances and Partners at AlgoSec, discusses how Cisco Nexus Dashboard Orchestrator (NDO) users can achieve policy-driven application-centric security management with AlgoSec. Leading Edge of the Data Center with AlgoSec and Cisco NDO AlgoSec ASMS A32.6 is our latest release to feature a major technology integration, built upon our well-established collaboration with Cisco — bringing this partnership to the front of the Cisco innovation cycle with support for Nexus Dashboard Orchestrator (NDO) . NDO allows Cisco ACI – and legacy-style Data Center Network Management – to operate at scale in a global context, across data center and cloud regions. The AlgoSec solution with NDO brings the power of our intelligent automation and software-defined security features for ACI, including planning, change management, and microsegmentation, to this global scope. I urge you to see what AlgoSec delivers for ACI with multiple use cases, enabling application-mode operation and microsegmentation, and delivering integrated security operations workflows. AlgoSec now brings support for Shadow EPG and Inter-Site Contracts with NDO, to our existing ACI strength. Let’s Change the World by Intent I had my first encounter with Cisco Application Centric Infrastructure in 2014 at a Symantec Vision conference. The original Senior Product Manager and Technical Marketing lead were hosting a discussion about the new results from their recent Insieme acquisition and were eager to onboard new partners with security cases and added operations value. At the time I was promoting the security ecosystem of a different platform vendor, and I have to admit that I didn’t fully understand the tremendous changes that ACI was bringing to security for enterprise connectivity. It’s hard to believe that it’s now seven years since then and that Cisco ACI has mainstreamed software-defined networking — changing the way that network teams had grown used to running their networks and devices since at least the mid-’90s. Since that 2014 introduction, Cisco’s ACI changed the landscape of data center networking by introducing an intent-based approach, over earlier configuration-centric architecture models. This opened the way for accelerated movement by enterprise data centers to meet their requirements for internal cloud deployments, new DevOps and serverless application models, and the extension of these to public clouds for hybrid operation – all within a single networking technology that uses familiar switching elements. Two new, software-defined artifacts make this possible in ACI: End-Point Groups (EPG) and Contracts – individual rules that define characteristics and behavior for an allowed network connection. ACI Is Great, NDO Is Global That’s really where NDO comes into the picture. By now, we have an ACI-driven data center networking infrastructure, with management redundancy for the availability of applications and preserving their intent characteristics. Through the use of an infrastructure built on EPGs and contracts, we can reach from the mobile and desktop to the datacenter and the cloud. This means our next barrier is the sharing of intent-based objects and management operations, beyond the confines of a single data center. We want to do this without clustering types, that depend on the availability risk of individual controllers, and hit other limits for availability and oversight. Instead of labor-intensive and error-prone duplication of data center networks and security in different regions, and for different zones of cloud operation, NDO introduces “stretched” shadow EPGs, and inter-site contracts, for application-centric and intent-based, secure traffic which is agnostic to global topologies – wherever your users and applications need to be. NDO Deployment Topology – Image: Cisco Getting NDO Together with AlgoSec: Policy-Driven, App-Centric Security Management Having added NDO capability to the formidable shared platform of AlgoSec and Cisco ACI, regional-wide and global policy operations can be executed in confidence with intelligent automation. AlgoSec makes it possible to plan for operations of the Cisco NDO scope of connected fabrics in application-centric mode, unlocking the ACI super-powers for micro-segmentation. This enables a shared model between networking and security teams for zero-trust and defense-in-depth, with accelerated, global-scope, secure application changes at the speed of business demand — within minutes, rather than days or weeks. Change management : For security policy change management this means that workloads may be securely re-located from on-premises to public cloud, under a single and uniform network model and change-management framework — ensuring consistency across multiple clouds and hybrid environments. Visibility : With an NDO-enabled ACI networking infrastructure and AlgoSec’s ASMS, all connectivity can be visualized at multiple levels of detail, across an entire multi-vendor, multi-cloud network. This means that individual security risks can be directly correlated to the assets that are impacted, and a full understanding of the impact by security controls on an application’s availability. Risk and Compliance : It’s possible across all the NDO connected fabrics to identify risk on-premises and through the connected ACI cloud networks, including additional cloud-provider security controls. The AlgoSec solution makes this a self-documenting system for NDO, with detailed reporting and an audit trail of network security changes, related to original business and application requests. This means that you can generate automated compliance reports, supporting a wide range of global regulations, and your own, self-tailored policies. The Road Ahead Cisco NDO is a major technology and AlgoSec is in the early days with our feature introduction, nonetheless, we are delighted and enthusiastic about our early adoption customers. Based on early reports with our Cisco partners, needs will arise for more automation, which would include the “zero-touch” push for policy changes – committing Shadow EPG and Inter-site Contract changes to the orchestrator, as we currently do for ACI APIC. Feedback will also shape a need for automation playbooks and workflows that are most useful in the NDO context, and that we can realize with a full committable policy by the ASMS Firewall Analyzer. Contact Us! I encourage anyone interested in NDO and enhancing their operational maturity in aligned network and security operation, to talk to us about our joint solution. We work together with Cisco teams and resellers and will be glad to share more. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- AlgoSec | AlgoSec attains ISO 27001 Accreditation
The certification demonstrates AlgoSec’s commitment to protecting its customers’ and partners’ data Data protection is a top priority for... Auditing and Compliance AlgoSec attains ISO 27001 Accreditation Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/27/20 Published The certification demonstrates AlgoSec’s commitment to protecting its customers’ and partners’ data Data protection is a top priority for AlgoSec, proven by the enhanced security management system we have put in place to protect our customers’ assets. This commitment has been recognized by the ISO, who has awarded AlgoSec the ISO/IEC 27001 certification . The ISO 27001 accreditation is a voluntary standard awarded to service providers who meet the criteria for data protection. It outlines the requirements for building, monitoring, and improving an information security management system (ISMS); a systematic approach to managing sensitive company information including people, processes and IT systems. The ISO 27001 standard is made up of ten detailed control categories detailing information security, security organization, personnel security, physical security, access control, continuity planning, and compliance. To achieve the ISO 27001 certification, organizations must demonstrate that they can protect and manage sensitive company and customer information and undergo an independent audit by an accredited agency. The benefits of working with an ISO 27001 supplier include: Risk management – Standards that govern who can access information. Information security – Standards that detail how data is handled and transmitted. Business continuity – In order to maintain compliance, an ISMS must be continuously tested and improved. Obtaining the ISO 27001 certification is a testament to our drive for excellence and offers reassurance to our customers that our security measures meet the criteria set out by a global defense standard. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- Partner solution brief Enforcing micro-segmentation with Akamai and AlgoSec - AlgoSec
Partner solution brief Enforcing micro-segmentation with Akamai and AlgoSec Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- AlgoSec | Top 9 Network Security Monitoring Tools for Identifying Potential Threats
What is Network Security Monitoring? Network security monitoring is the process of inspecting network traffic and IT infrastructure for... Network Security Top 9 Network Security Monitoring Tools for Identifying Potential Threats Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/4/24 Published What is Network Security Monitoring? Network security monitoring is the process of inspecting network traffic and IT infrastructure for signs of security issues. These signs can provide IT teams with valuable information about the organization’s cybersecurity posture. For example, security teams may notice unusual changes being made to access control policies. This may lead to unexpected traffic flows between on-premises systems and unrecognized web applications. This might provide early warning of an active cyberattack, giving security teams enough time to conduct remediation efforts and prevent data loss . Detecting this kind of suspicious activity without the visibility that network security monitoring provides would be very difficult. These tools and policies enhance operational security by enabling network intrusion detection, anomaly detection, and signature-based detection. Full-featured network security monitoring solutions help organizations meet regulatory compliance requirements by maintaining records of network activity and security incidents. This gives analysts valuable data for conducting investigations into security events and connect seemingly unrelated incidents into a coherent timeline. What To Evaluate in a Network Monitoring Software Provider Your network monitoring software provider should offer a comprehensive set of features for collecting, analyzing, and responding to suspicious activity anywhere on your network. It should unify management and control of your organization’s IT assets while providing unlimited visibility into how they interact with one another. Comprehensive alerting and reporting Your network monitoring solution must notify you of security incidents and provide detailed reports describing those incidents in real-time. It should include multiple toolsets for collecting performance metrics, conducting in-depth analysis, and generating compliance reports. Future-proof scalability Consider what kind of network monitoring needs your organization might have several years from now. If your monitoring tool cannot scale to accommodate that growth, you may end up locked into a vendor agreement that doesn’t align with your interests. This is especially true with vendors that prioritize on-premises implementations since you run the risk of paying for equipment and services that you don’t actually use. Cloud-delivered software solutions often perform better in use cases where flexibility is important. Integration with your existing IT infrastructure Your existing security tech stack may include a selection of SIEM platforms, IDS/IPS systems, firewalls , and endpoint security solutions. Your network security monitoring software will need to connect all of these tools and platforms together in order to grant visibility into network traffic flows between them. Misconfigurations and improper integrations can result in dangerous security vulnerabilities. A high-performance vulnerability scanning solution may be able to detect these misconfigurations so you can fix them proactively. Intuitive user experience for security teams and IT admins Complex tools often come with complex management requirements. This can create a production bottleneck when there aren’t enough fully-trained analysts on the IT security team. Monitoring tools designed for ease of use can improve security performance by reducing training costs and allowing team members to access monitoring insights more easily. Highly automated tools can drive even greater performance benefits by reducing the need for manual control altogether. Excellent support and documentation Deploying network security monitoring tools is not always a straightforward task. Most organizations will need to rely on expert support to assist with implementation, troubleshooting, and ongoing maintenance. Some vendors provide better technical support to customers than others, and this difference is often reflected in the price. Some organizations work with managed service providers who can offset some of their support and documentation needs by providing on-demand expertise when needed. Pricing structures that work for you Different vendors have different pricing structures. When comparing network monitoring tools, consider the total cost of ownership including licensing fees, hardware requirements, and any additional costs for support or updates. Certain usage models will fit your organization’s needs better than others, and you’ll have to document them carefully to avoid overpaying. Compliance and reporting capabilities If you plan on meeting compliance requirements for your organization, you will need a network security monitoring tool that can generate the necessary reports and logs to meet these standards. Every set of standards is different, but many reputable vendors offer solutions for meeting specific compliance criteria. Find out if your network security monitoring vendor supports compliance standards like PCI DSS, HIPAA, and NIST. A good reputation for customer success Research the reputation and track record of every vendor you could potentially work with. Every vendor will tell you that they are the best – ask for evidence to back up their claims. Vendors with high renewal rates are much more likely to provide you with valuable security technology than lower-priced competitors with a significant amount of customer churn. Pay close attention to reviews and testimonials from independent, trustworthy sources. Compatibility with network infrastructure Your network security monitoring tool must be compatible with the entirety of your network infrastructure. At the most basic level, it must integrate with your hardware fleet of routers, switches, and endpoint devices. If you use devices with non-compatible operating systems, you risk introducing blind spots into your security posture. For the best results, you must enjoy in-depth observability for every hardware and software asset in your network, from the physical layer to the application layer. Regular updates and maintenance Updates are essential to keep security tools effective against evolving threats. Check the update frequency of any monitoring tool you consider implementing and look for the specific security vulnerabilities addressed in those updates. If there is a significant delay between the public announcement of new vulnerabilities and the corresponding security patch, your monitoring tools may be vulnerable during that period of time. 9 Best Network Security Monitoring Providers for Identifying Cybersecurity Threats 1. AlgoSec AlgoSec is a network security policy management solution that helps organizations automate and orchestrate network security policies. It keeps firewall rules , routers, and other security devices configured correctly, ensuring network assets are secured properly. AlgoSec protects organizations from misconfigurations that can lead to malware, ransomware, and phishing attacks, and gives security teams the ability to proactively simulate changes to their IT infrastructure. 2. SolarWinds SolarWinds offers a range of network management and monitoring solutions, including network security monitoring tools that detect changes to security policies and traffic flows. It provides tools for network visibility and helps identify and respond to security incidents. However, SolarWinds can be difficult for some organizations to deploy because customers must purchase additional on-premises hardware. 3. Security Onion Security Onion is an open-source Linux distribution designed for network security monitoring. It integrates multiple monitoring tools like Snort, Suricata, Bro, and others into a single platform, making it easier to set up and manage a comprehensive network security monitoring solution. As an open-source option, it is one of the most cost-effective solutions available on the market, but may require additional development resources to customize effectively for your organization’s needs. 4. ELK Stack Elastic ELK Stack is a combination of three open-source tools: Elasticsearch, Logstash, and Kibana. It’s commonly used for log data and event analysis. You can use it to centralize logs, perform real-time analysis, and create dashboards for network security monitoring. The toolset provides high-quality correlation through large data sets and provides security teams with significant opportunities to improve security and network performance using automation. 5. Cisco Stealthwatch Cisco Stealthwatch is a commercial network traffic analysis and monitoring solution. It uses NetFlow and other data sources to detect and respond to security threats, monitor network behavior, and provide visibility into your network traffic. It’s a highly effective solution for conducting network traffic analysis, allowing security analysts to identify threats that have infiltrated network assets before they get a chance to do serious damage. 6. Wireshark Wireshark is a widely-used open-source packet analyzer that allows you to capture and analyze network traffic in real-time. It can help you identify and troubleshoot network issues and is a valuable tool for security analysts. Unlike other entries on this list, it is not a fully-featured monitoring platform that collects and analyzes data at scale – it focuses on providing deep visibility into specific data flows one at a time. 7. Snort Snort is an open-source intrusion detection system (IDS) and intrusion prevention system (IPS) that can monitor network traffic for signs of suspicious or malicious activity. It’s highly customizable and has a large community of users and contributors. It supports customized rulesets and is easy to use. Snort is widely compatible with other security technologies, allowing users to feed signature updates and add logging capabilities to its basic functionality very easily. However, it’s an older technology that doesn’t natively support some modern features users will expect it to. 8. Suricata Suricata is another open-source IDS/IPS tool that can analyze network traffic for threats. It offers high-performance features and supports rules compatible with Snort, making it a good alternative. Suricata was developed more recently than Snort, which means it supports modern workflow features like multithreading and file extraction. Unlike Snort, Suricata supports application-layer detection rules and can identify traffic on non-standard ports based on the traffic protocol. 9. Zeek (formerly Bro) Zeek is an open-source network analysis framework that focuses on providing detailed insights into network activity. It can help you detect and analyze potential security incidents and is often used alongside other NSM tools. This tool helps security analysts categorize and model network traffic by protocol, making it easier to inspect large volumes of data. Like Suricata, it runs on the application layer and can differentiate between protocols. Essential Network Monitoring Features Traffic Analysis The ability to capture, analyze, and decode network traffic in real-time is a basic functionality all network security monitoring tools should share. Ideally, it should also include support for various network protocols and allow users to categorize traffic based on those categories. Alerts and Notifications Reliable alerts and notifications for suspicious network activity, enabling timely response to security threats. To avoid overwhelming analysts with data and contributing to alert fatigue, these notifications should consolidate data with other tools in your security tech stack. Log Management Your network monitoring tool should contribute to centralized log management through network devices, apps, and security sensors for easy correlation and analysis. This is best achieved by integrating a SIEM platform into your tech stack, but you may not wish to store all of your network’s logs on the SIEM, because of the added expense. Threat Detection Unlike regular network traffic monitoring, network security monitoring focuses on indicators of compromise in network activity. Your tool should utilize a combination of signature-based detection, anomaly detection, and behavioral analysis to identify potential security threats. Incident Response Support Your network monitoring solution should facilitate the investigation of security incidents by providing contextual information, historical data, and forensic capabilities. It may correlate detected security events so that analysts can conduct investigations more rapidly, and improve security outcomes by reducing false positives. Network Visibility Best-in-class network security monitoring tools offer insights into network traffic patterns, device interactions, and potential blind spots to enhance network monitoring and troubleshooting. To do this, they must connect with every asset on the network and successfully observe data transfers between assets. Integration No single security tool can be trusted to do everything on its own. Your network security monitoring platform must integrate with other security solutions, such as firewalls, intrusion detection/prevention systems (IDS/IPS), and SIEM platforms to create a comprehensive security ecosystem. If one tool fails to detect malicious activity, another may succeed. Customization No two organizations are the same. The best network monitoring solutions allow users to customize rules, alerts, and policies to align with specific security requirements and network environments. These customizations help security teams reduce alert fatigue and focus their efforts on the most important data traffic flows on the network. Advanced Features for Identifying Vulnerabilities & Weaknesses Threat Intelligence Integration Threat intelligence feeds enhance threat detection and response capabilities by providing in-depth information about the tactics, techniques, and procedures used by threat actors. These feeds update constantly to reflect the latest information on cybercriminal activities so analysts always have the latest data. Forensic Capabilities Detailed data and forensic tools provide in-depth analysis of security breaches and related incidents, allowing analysts to attribute attacks to hackers and discover the extent of cyberattacks. With retroactive forensics, investigators can include historical network data and look for evidence of compromise in the past. Automated Response Automated responses to security threats can isolate affected devices or modify firewall rules the moment malicious behavior is detected. Automated detection and response workflows must be carefully configured to avoid business disruptions stemming from misconfigured algorithms repeatedly denying legitimate traffic. Application-level Visibility Some network security monitoring tools can identify and classify network traffic by applications and services , enabling granular control and monitoring. This makes it easier for analysts to categorize traffic based on its protocol, which can streamline investigations into attacks that take place on the application layer. Cloud and Virtual Network Support Cloud-enabled organizations need monitoring capabilities that support cloud environments and virtualized networks. Without visibility into these parts of the hybrid network, security vulnerabilities may go unnoticed. Cloud-native network monitoring tools must include data on public and private cloud instances as well as containerized assets. Machine Learning and AI Advanced machine learning and artificial intelligence algorithms can improve threat detection accuracy and reduce false positives. These features often work by examining large-scale network traffic data and identifying patterns within the dataset. Different vendors have different AI models and varying levels of competence with emerging AI technology. User and Entity Behavior Analytics (UEBA) UEBA platforms monitor asset behaviors to detect insider threats and compromised accounts. This advanced feature allows analysts to assign dynamic risk scores to authenticated users and assets, triggering alerts when their activities deviate too far from their established routine. Threat Hunting Tools Network monitoring tools can provide extra features and workflows for proactive threat hunting and security analysis. These tools may match observed behaviors with known indicators of compromise, or match observed traffic patterns with the tactics, techniques, and procedures of known threat actors. AlgoSec: The Preferred Network Security Monitoring Solution AlgoSec has earned an impressive reputation for its network security policy management capabilities. The platform empowers security analysts and IT administrators to manage and optimize network security policies effectively. It includes comprehensive firewall policy and change management capabilities along with comprehensive solutions for automating application connectivity across the hybrid network. Here are some reasons why IT leaders choose AlgoSec as their preferred network security policy management solution: Policy Optimsization: AlgoSec can analyze firewall rules and network security policies to identify redundant or conflicting rules, helping organizations optimize their security posture and improve rule efficiency. Change Management: It offers tools for tracking and managing changes to firewall and network data policies, ensuring that changes are made in a controlled and compliant manner. Risk Assessment: AlgoSec can assess the potential security risks associated with firewall rule changes before they are implemented, helping organizations make informed decisions. Compliance Reporting: It provides reports and dashboards to assist with compliance audits, making it easier to demonstrate regulatory compliance to regulators. Automation: AlgoSec offers automation capabilities to streamline policy management tasks, reducing the risk of human error and improving operational efficiency. Visibility: It provides visibility into network traffic and policy changes, helping security teams monitor and respond to potential security incidents. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call