top of page

Search results

615 results found with an empty search

  • AlgoSec | Deconstructing the Complexity of Managing Hybrid Cloud Security

    The move from traditional data centers to a hybrid cloud network environment has revolutionized the way enterprises construct their... Hybrid Cloud Security Management Deconstructing the Complexity of Managing Hybrid Cloud Security Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 4/4/22 Published The move from traditional data centers to a hybrid cloud network environment has revolutionized the way enterprises construct their networks, allowing them to reduce hardware and operational costs, scale per business needs and be more agile. When enterprises choose to implement a hybrid cloud model, security is often one of the primary concerns. The additional complexity associated with a hybrid cloud environment can, in turn, make securing resources to a single standard extremely challenging. This is especially true when it comes to managing the behavioral and policy nuances of business applications . Moreover, hybrid cloud security presents an even greater challenge when organizations are unable to fully control the lifecycle of the public cloud services they are using. For instance, when an organization is only responsible for hosting a portion of its business-critical workloads on the public cloud and has little to no control over the hosting provider, it is unlikely to be able to enforce consistent security standards across both environments. Managing hybrid cloud security Hybrid cloud security requires an extended period of planning and investment for enterprises to become secure. This is because hybrid cloud environments are inherently complex and typically involve multiple providers. To effectively manage these complex environments, organizations will require a comprehensive approach to security that addresses each of the following challenges: Strategic planning and oversight : Policy design and enforcement across hybrid clouds Managing multiple vendor relationships and third-party security controls : Cloud infrastructure security controls, security products provided by cloud and third-party providers and third-party on-premise security vendor products. Managing security-enabling technologies in multiple environments : on-premise, public cloud and private cloud. Managing multiple stakeholders : CISO, IT/Network Security, SecOps, DevOps and Cloud teams. Workflow automation : Auto responding to changing business demands requiring provisioning of policy changes automatically and securely across the hybrid cloud estate. Optimizing security and agility : Aligning risk tolerance with the DevOps teams to manage business application security and connectivity. With these challenges in mind, here are 5 steps you can take to effectively address hybrid cloud security challenges. Step 1. Define the security objectives A holistic approach to high availability is focused on the two critical elements of any hybrid cloud environment: technology and processes. Defining a holistic strategy in a hybrid cloud environment has these advantages: Improved operational availability : Ensure continuous application connectivity, data, and system availability across the hybrid estate. Reduced risk : Understand threats to business continuity from natural disasters or facility disruptions. Better recovery : Maintain data consistency by mirroring critical data between primary locations in case of failure at one site through multiple backup sites. Step 2. Visualize the entire network topology The biggest potential point of failure for hybrid cloud deployment is where the public cloud and private environment offerings meet. This can result in a visual gap often due to disparities between in-house security protocols and third-party security standards, precluding SecOps teams from securing the connectivity of business applications. The solution lies in gaining complete visibility across the entire hybrid cloud estate. This requires having the right solution in place that can help SecOps teams discover, track and migrate application connectivity without regard for the underlying infrastructure. Step 3. Use automation for adaptability and scalability The ability to adapt and scale on demand is one of the most significant advantages of a hybrid cloud environment. Invariably, when considering the range of benefits of a hybrid cloud, it is difficult to conceptualize the power of scaling on demand. Still, enterprises can enjoy tremendous benefits when they correctly implement automation that can respond on-demand to necessary changes. With the right change automation solution, change requests can be easily defined and pushed through the workflow without disrupting the existing network security policy rules or introducing new potential risks. Step 4. Minimize the learning curb According to a 2021 Global Knowledge and IT Skills report , 76% of IT decision-makers experience critical skills gaps in their teams. Hybrid cloud deployment is a complicated process, with the largest potential point of failure being where in-house security protocols and third-party standards interact. If this gap is not closed, malicious actors or malware could slip through it. Meeting this challenge requires a unification of all provisions made to policy changes so that SecOps teams can become familiar with them, regardless of any new device additions to the network security infrastructure. This would be applicable to provisions associated with policy changes across all firewalls, segments, zones, micro‐segments, security groups and zones, and within each business application. Step 5. Get compliant Compliance cannot be guaranteed when the enterprise cannot monitor all vendors and platforms or enforce their policies in a standard manner. This can be especially challenging when attempting to apply compliance standardizations across an infrastructure that consists of a multi-vendor hybrid network environment. To address this issue, enterprises must get their SecOps teams to shift their focus away from pure technology management and toward a larger scale view that ensures that their network security policies consistently comply with regulatory requirements across the entire hybrid cloud estate. Summary Hybrid cloud security presents a significant—and often overlooked—challenge for enterprises. This is because hybrid cloud environments are inherently complex, involving multiple providers, and impact how enterprises manage their business applications and overall IT assets. To learn how to reach your optimal hybrid cloud security solution, read more and find out how you can simplify your journey. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | CSPM importance for CISOs. What security issues can be prevented\defended with CSPM?

    Cloud Security is a broad domain with many different aspects, some of them human. Even the most sophisticated and secure systems can be... Cloud Security CSPM importance for CISOs. What security issues can be prevented\defended with CSPM? Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/17/21 Published Cloud Security is a broad domain with many different aspects, some of them human. Even the most sophisticated and secure systems can be jeopardized by human elements such as mistakes and miscalculations. Many organizations are susceptible to such dangers, especially during critical tech configurations and transfers. Especially for example, during digital transformation and cloud migration may result in misconfigurations that can leave your critical applications vulnerable and your company’s sensitive data an easy target for cyber-attacks. The good news is that Prevasio, and other cybersecurity providers have brought in new technologies to help improve the cybersecurity situation across multiple organizations. Today, we discuss Cloud Security Posture Management (CSPM) and how it can help prevent not just misconfigurations in cloud systems but also protect against supply chain attacks. Understanding Cloud Security Posture Management First, we need to fully understand what a CSPM is before exploring how it can prevent cloud security issues. CSPM is first of all a practice for adopting security best practices as well as automated tools to harden and manage the company security strength across various cloud based services such as Software as a Service (SaaS), Infrastructure as a Service (IaaS), and Platform as a Service (PaaS). These practices and tools can be used to determine and solve many security issues within a cloud system. Not only is CSPM critical to the growth and integrity of your cloud infrastructure, but it’s also mandatory for organizations with CIS, GDPR, PCI-DSS, NIST, HIPAA and similar compliance requirements. How Does CSPM Work? There are numerous cloud service providers such as AWS , Azure , Google Cloud, and others that provide hyper scaling cloud hosted platforms as well as various cloud compute services and solutions to organizations that previously faced many hurdles with their on-site cloud infrastructures. When you migrate your organization to these platforms, you can effectively scale up and cut down on on-site infrastructure spending. However, if not appropriately handled, cloud migration comes with potential security risks. For instance, an average Lift and Shift transfer that involves a legacy application may not be adequately security hardened or reconfigured for safe use in a public cloud setup. This may result in security loopholes that expose the network and data to breaches and attacks. Cloud misconfiguration can happen in multiple ways. However, the most significant risk is not knowing that you are endangering your organization with such misconfigurations. That being the case, below are a few examples of cloud misconfigurations that can be identified and solved by CSPM tools such as Prevasio within your cloud infrastructure: Improper identity and access management : Your organization may not have the best identity and access management system in place. For instance, lack of Multi-Factor Authentication (MFA) for all users, unreliable password hygiene, and discriminatory user policies instead of group access, Role-based access, and everything contrary to best practices, including least privilege. You are unable to log in to events in your cloud due to an accidental CloudTrail error. Cloud storage misconfigurations : Having unprotected S3 buckets on AWS or Azure. CSPM can compute situations that have the most vulnerabilities within applications Incorrect secret management : Secret credentials are more than user passwords or pins. They include encryption keys, API keys, among others. For instance, every admin must use encryption keys on the server-side and rotate the keys every 90 days. Failure to do this can lead to credentials misconfigurations. Ideally, part of your cloud package must include and rely on solutions such as AWS Secrets Manager , Azure Key Vault , and other secrets management solutions. The above are a mere few examples of common misconfigurations that can be found in your cloud infrastructure, but CSPM can provide additional advanced security and multiple performance benefits. Benefits Of CSPM CSPM manages your cloud infrastructure. Some of the benefits of having your cloud infrastructure secured with CSPM boils down to peace of mind, that reassurance of knowing that your organization’s critical data is safe. It further provides long-term visibility to your cloud networks, enables you to identify violations of policies, and allows you to remediate your misconfigurations to ensure proper compliance. Furthermore, CSPM provides remediation to safeguard cloud assets as well as existing compliance libraries. Technology is here to stay, and with CSPM, you can advance the cloud security posture of your organization. To summarize it all, here are what you should expect with CSPM cloud security: Risk assessment : CSPM tools can enable you to see your network security level in advance to gain visibility into security issues such as policy violations that expose you to risk. Continuous monitoring : Since CSPM tools are versatile they present an accurate view of your cloud system and can identify and instantly flag off policy violations in real-time. Compliance : Most compliance laws require the adoption of CIS, NIST, PCI-DSS, SOC2, HIPAA, and other standards in the cloud. With CSPM, you can stay ahead of internal governance, including ISO 27001. Prevention : Most CSPM allows you to identify potential vulnerabilities and provide practical recommendations to prevent possible risks presented by these vulnerabilities without additional vendor tools. Supply Chain Attacks : Some CSPM tools, such as Prevasio , provides you malware scanning features to your applications, data, and their dependency chain on data from external supply chains, such as git imports of external libraries and more. With automation sweeping every industry by storm, CSPM is the future of all-inclusive cloud security. With cloud security posture management, you can do more than remediate configuration issues and monitor your organization’s cloud infrastructure. You’ll also have the capacity to establish cloud integrity from existing systems and ascertain which technologies, tools, and cloud assets are widely used. CSPM’s capacity to monitor cloud assets and cyber threats and present them in user-friendly dashboards is another benefit that you can use to explore, analyze and quickly explain to your team(s) and upper management. Even find knowledge gaps in your team and decide which training or mentorship opportunities your security team or other teams in the organization might require. Who Needs Cloud Security Posture Management? At the moment, cloud security is a new domain that its need and popularity is growing by the day. CSPM is widely used by organizations looking to maximize in a safe way the most of all that hyper scaling cloud platforms can offer, such as agility, speed, and cost-cutting strategies. The downside is that the cloud also comes with certain risks, such as misconfigurations, vulnerabilities and internal\external supply chain attacks that can expose your business to cyber-attacks. CSPM is responsible for protecting users, applications, workloads, data, apps, and much more in an accessible and efficient manner under the Shared Responsibility Model. With CSPM tools, any organization keen on enhancing its cloud security can detect errors, meet compliance regulations, and orchestrate the best possible defenses. Let Prevasio Solve Your Cloud Security Needs Prevasio’s Next-Gen CSPM solution focus on the three best practices: light touch\agentless approach, super easy and user-friendly configuration, easy to read and share security findings context, for visibility to all appropriate users and stakeholders in mind. Our cloud security offerings are ideal for organizations that want to go beyond misconfiguration, legacy compliance or traditional vulnerability scanning. We offer an accelerated visual assessment of your cloud infrastructure, perform automated analysis of a wide range of cloud assets, identify policy errors, supply-chain threats, and vulnerabilities and position all these to your unique business goals. What we provide are prioritized recommendations for well-orchestrated cloud security risk mitigations. To learn more about us, what we do, our cloud security offerings, and how we can help your organization prevent cloud infrastructure attacks, read all about it here . Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • GESTION DE LA POLITIQUE DE SÉCURITÉ EN DATA CENTER DE NOUVELLE GÉNÉRATION - AlgoSec

    GESTION DE LA POLITIQUE DE SÉCURITÉ EN DATA CENTER DE NOUVELLE GÉNÉRATION Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Cloud and datacenter security teams are now one, but the tools, workflows, and policies haven’t caught up

    Webinars 5 proven ways to secure your hybrid network environment during team convergence Cloud and datacenter security teams are now one, but the tools, workflows, and policies haven’t caught up. Join ESG Principal Analyst John Grady alongside AlgoSec’s Field CTO Kyle Wickert and Product Manager Gal Yosef for a practical conversation on how leading organizations are tackling the operational challenges of security convergence. What you’ll learn: Why convergence between cloud and datacenter teams is accelerating How to reduce tool overload and policy inconsistencies What steps are teams taking to unify visibility, policy, and risk without slowing down delivery July 16, 2025 John Grady Principal Analyst | ESG Gal Yosef Product Manager | AlgoSec Kyle Wickert WW Strategic Architect Relevant resources 6 best practices to stay secure in the hybrid cloud Read Document Securing & managing hybrid network security See Documentation 6 must-dos to secure the hybrid cloud Read Document Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • The business case for AlgoSec Cloud Enterprise (ACE) - AlgoSec

    The business case for AlgoSec Cloud Enterprise (ACE) Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | How to Create a Zero Trust Network

    Organizations no longer keep their data in one centralized location. Users and assets responsible for processing data may be located... Zero Trust How to Create a Zero Trust Network Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/12/24 Published Organizations no longer keep their data in one centralized location. Users and assets responsible for processing data may be located outside the network, and may share information with third-party vendors who are themselves removed from those external networks. The Zero Trust approach addresses this situation by treating every user, asset, and application as a potential attack vector whether it is authenticated or not. This means that everyone trying to access network resources will have to verify their identity, whether they are coming from inside the network or outside. What are the Zero Trust Principles and Concepts? The Zero Trust approach is made up of six core concepts that work together to mitigate network security risks and reduce the organization’s attack surface. 1. The principle of least privilege Under the Zero Trust model, network administrators do not provide users and assets with more network access than strictly necessary. Access to data is also revoked when it is no longer needed. This requires security teams to carefully manage user permissions , and to be able to manage permissions based on users’ identities or roles. The principle of least privilege secures the enterprise network ecosystem by limiting the amount of damage that can result from a single security failure. If an attacker compromises a user’s account, it won’t automatically gain access to a wide range of systems, tools, and workloads beyond what that account is provisioned for. This can also dramatically simplify the process of responding to security events, because no user or asset has access to assets beyond the scope of their work. 2. Continuous data monitoring and validation Zero trust policy assumes that there are attackers both inside and outside the network. To guarantee the confidentiality, integrity, and availability of network assets, it must continuously evaluate users and assets on the network. User identity and privileges must be checked periodically along with device identity and security. Organizations accomplish this in a variety of ways. Connection and login time-outs are one way to ensure periodic monitoring and validation since it requires users to re-authenticate even if they haven’t done anything suspicious. This helps protect against the risk of threat actors using credential-based attacks to impersonate authenticated users, as well as a variety of other attacks. 3. Device access control Organizations undergoing the Zero Trust journey must carefully manage and control the way users interact with endpoint devices. Zero Trust relies on verifying and authenticating user identities separately from the devices they use. For example, Zero Trust security tools must be able to distinguish between two different individuals using the same endpoint device. This approach requires fundamental changes to the way certain security tools work. For example, firewalls that allow or deny access to network assets based purely on IP address and port information aren’t sufficient. Most end users have more than one device at their disposal, and it’s common for mobile devices to change IP addresses. As a result, the cybersecurity tech stack needs to be able to grant and revoke permissions based on the user’s actual identity or role. 4. Network micro segmentation Network segmentation is a good security practice even outside the Zero Trust framework, but it takes on special significance when threats can come from inside and outside the network. Microsegmentation takes this one step further by breaking regular network segments down into small zones with their own sets of permissions and authorizations. These microsegments can be as small as a single asset, and an enterprise data center may have dozens of separately secured zones like these. Any user or asset with permission to access one zone will not necessarily have access to any of the others. Microsegmentation improves security resilience by making it harder for attackers to move between zones. 5. Detecting lateral movement Lateral movement is when threat actors move from one zone to another in the network. One of the benefits of micro segmentation is that threat actors must interact with security tools in order to move between different zones on the network. Even if the attackers are successful, their activities generate logs and audit trails that analysts can follow when investigating security incidents. Zero Trust architecture is designed to contain attackers and make it harder for them to move laterally through networks. When an attack is detected, the compromised asset can be quarantined from the rest of the network. Assets can be as small as individual devices or user accounts, or as large as entire network segments. The more granular your security architecture is, the more choices you have for detecting and preventing lateral movement on the network. 6. Multi-factor authentication (MFA) Passwords are a major problem for traditional security models, because most security tools automatically extend trust to anyone who knows the password. Once a malicious actor learns a privileged user’s login credentials, they can bypass most security checks by impersonating that user. Multi-factor authentication solves that problem by requiring users to provide more information. Knowing a password isn’t enough – users must authenticate by proving their identity in another way. These additional authentication factors can come in the form of biometrics, challenge/response protocols, or hardware-based verifications. How To Implement a Zero Trust Network 1. Map Out Your Attack Surface There is no one-size-fits-all solution for designing and implementing Zero Trust architecture. You must carefully define your organization’s attack surface and implement solutions that protect your most valuable assets. This will require a variety of tools, including firewalls, user access controls, permissions, and encryption. You will need to segment your network into individual zones and use microsegmentation to secure high-value and high-volume zones separately. Pay close attention to how your organization secures its most important assets and connections: Sensitive data . This might include customer and employee data, proprietary information, and intellectual property that you can’t allow threat actors to gain access to. It should benefit from the highest degree of security. Critical applications. These applications play a central role in your organization’s business processes, and must be protected against the risk of disruption. Many of them process sensitive data and must benefit from the same degree of security. Physical assets. This includes everything from customer-facing kiosks to hardware servers located in a data center. Access control is vital for preventing malicious actors from interacting with physical assets. Third-party services. Your organization relies on a network of partners and service providers, many of whom need privileged access to your data. Your Zero Trust policy must include safeguards against attacks that compromise third-party partners in your supply chain. 2. Implement Zero Trust Controls using Network Security Tools The next step in your Zero Trust journey is the implementation of security tools that allow you collect, analyze, and respond to user behaviors on your network. This may require the adjustment of your existing security tech stack, and the addition of new tools designed for Zero Trust use cases. Firewalls must be able to capture connection data beyond the traditional IP, port, and protocol data that most simple solutions rely on. The Zero Trust approach requires inspecting the identities of users and assets that connect with network assets, which requires more advanced firewall technology. This is possible with next generation firewall (NGFW) technology. VPNs may need to be reconfigured or replaced because they do not typically enforce the principle of least privilege. Usually, VPNs grant users access to the entire connected network – not just one small portion of it. In most cases, organizations pursuing Zero Trust stop using VPNs altogether because they no longer provide meaningful security benefits. Zero Trust Network Access (ZTNA) provides secure access to network resources while concealing network infrastructure and services. It is similar to a software-defined perimeter that dynamically responds to network changes and grants flexibility to security policies. ZTNA works by establishing one-to-one encrypted connections between network assets, making imprecise VPNs largely redundant. 3. Configure for Identity and Access Management Identity-based monitoring is one of the cornerstones of the Zero Trust approach. In order to accurately grant and revoke permissions to users and assets on the network, you must have some visibility into the identities behind the devices being used. Zero Trust networks verify user identities in a variety of ways. Some next-generation firewalls can distinguish between user traffic, device traffic, application traffic, and content. This allows the firewall to assign application sessions to individual users and devices, and inspect the data being transmitted between individuals on networks. In practice, this might mean configuring a firewall to compare outgoing content traffic with an encrypted list of login credentials. If a user accidentally logs onto a spoofed phishing website and enters their login credentials, the firewall can catch the data before it is transferred off the network. This would not be possible without the ability to distinguish between different types of traffic using next-generation firewall technology. Multi-factor authentication is also vital to identity and access management. A Zero Trust network should not automatically authenticate a user who presents the correct username and password combination to access a secure account. This does not prove the identity of the individual who owns the account – it only proves that the individual knows the username and password. Additional verification factors make it more likely that this person is, in fact, the owner of the account. 4. Create a Zero Trust Policy for Your IT Environment The process of implementing Zero Trust policies in cloud-native environments can be complex. Every third-party vendor and service provider has a role to play in establishing and maintaining Zero Trust. This often puts significant technical demands on third-party partners, which may require organizations to change their existing agreements. If a third-party partner cannot support Zero Trust, they can’t be allowed onto the network. The same is true for on-premises and data center environments, but with added emphasis on physical security and access control. Security leaders need to know who has physical access to servers and similar assets so they can conduct investigations into security incidents properly. Data centers need to implement strict controls on who interacts with protected equipment and how their access is supervised. How to Operationalize Zero Trust Your Zero Trust implementation will not automatically translate to an operational security context that you can immediately use. You will need to adopt security operations that reflect the Zero Trust strategy and launch adaptive security measures that address vulnerabilities in real-time. Gain visibility into your network. Your network perimeter is no longer strictly defined by its hardware. It consists of cloud resources, automated workflows, operating systems, and more. You won’t be able to enforce Zero Trust without gaining visibility into every aspect of your network environment. Monitor network infrastructure and traffic. Your security team will need to monitor and respond to access requests coming from inside and outside your network. This can lead to significant bottlenecks if your team is not equipped with solutions for automatically managing network traffic and access. Streamline detection and response. Zero Trust networks mitigate the risks of cyberattacks, malware, ransomware, and other potential threats, but it’s still up to individual security analysts to detect and investigate security incidents. The volume of data analysts must inspect may increase significantly, so you should be prepared to mitigate the issue of alert fatigue. Automate Endpoint Security. Consider implementing an automated Endpoint Detection and Response (EDR) solution that can identify malicious behaviors on network devices and address them in real-time. Implement Zero Trust With AlgoSec AlgoSec is a global cybersecurity leader that provides secure application connectivity and policy management through a unified platform. It aligns with Zero Trust principles to provide comprehensive traffic flow analysis and optimization while automated policy changes and eliminating the risk of compliance violations. Security leaders rely on AlgoSec to implement and operationalize Zero Trust deployments while proactively managing complex security policies . AlgoSec can help you establish a Zero Trust network quickly and efficiently, providing visibility and change management capabilities to your entire security tech stack and enabling security personnel to address misconfiguration risks in real-time. Book a demo now to find out how AlgoSec can help you adopt Zero Trust security and prevent attackers from infiltrating your organization. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Increasing Cisco ACI adoption with AlgoSec - AlgoSec

    Increasing Cisco ACI adoption with AlgoSec Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec partner program - AlgoSec

    AlgoSec partner program Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | Risk Management in Network Security: 7 Best Practices for 2024

    Protecting an organization against every conceivable threat is rarely possible. There is a practically unlimited number of potential... Uncategorized Risk Management in Network Security: 7 Best Practices for 2024 Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/26/24 Published Protecting an organization against every conceivable threat is rarely possible. There is a practically unlimited number of potential threats in the world, and security leaders don’t have unlimited resources available to address them. Prioritizing risks associated with more severe potential impact allows leaders to optimize cybersecurity decision-making and improve the organization’s security posture. Cybersecurity risk management is important because many security measures come with large costs. Before you can implement security controls designed to protect against cyberattacks and other potential risks, you must convince key stakeholders to support the project. Having a structured approach to cyber risk management lets you demonstrate exactly how your proposed changes impact the organization’s security risk profile. This makes it much easier to calculate the return on cybersecurity investment – making it a valuable tool when communicating with board members and executives. Here are seven tips every security leader should keep in mind when creating a risk management strategy: Cultivate a security-conscious risk management culture Use risk registers to describe potential risks in detail Prioritize proactive, low-cost risk remediation when possible Treat risk management as an ongoing process Invest in penetration testing to discover new vulnerabilities Demonstrate risk tolerance by implementing the NIST Cybersecurity Framework Don’t forget to consider false positives in your risk assessment What is a Risk Management Strategy? The first step to creating a comprehensive risk management plan is defining risk. According to the International Organization for Standardization (ISO) risk is “the effect of uncertainty on objectives”. This definition is accurate, but its scope is too wide. Uncertainty is everywhere, including things like market conditions, natural disasters, or even traffic jams. As a cybersecurity leader, your risk management process is more narrowly focused on managing risks to information systems, protecting sensitive data, and preventing unauthorized access. Your risk management program should focus on identifying these risks, assessing their potential impact, and creating detailed plans for addressing them. This might include deploying tools for detecting cyberattacks, implementing policies to prevent them, or investing in incident response and remediation tools to help you recover from them after they occur. In many cases, you’ll be doing all of these things at once. Crucially, the information you uncover in your cybersecurity risk assessment will help you prioritize these initiatives and decide how much to spend on them. Your risk management framework will provide you with the insight you need to address high-risk, high-impact cybersecurity threats first and manage low-risk, low-impact threats later on. 7 Tips for Creating a Comprehensive Risk Management Strategy 1. Cultivate a security-conscious risk management culture No CISO can mitigate security risks on their own. Every employee counts on their colleagues, partners, and supervisors to keep sensitive data secure and prevent data breaches. Creating a risk management strategy is just one part of the process of developing a security-conscious culture that informs risk-based decision-making. This is important because many employees have to make decisions that impact security on a daily basis. Not all of these decisions are critical-severity security scenarios, but even small choices can influence the way the entire organization handles risk. For example, most organizations list their employees on LinkedIn. This is not a security threat on its own, but it can contribute to security risks associated with phishing attacks and social engineering . Cybercriminals may create spoof emails inviting employees to fake webinars hosted by well-known employees, and use the malicious link to infect employee devices with malware. Cultivating a risk management culture won’t stop these threats from happening, but it might motivate employees to reach out when they suspect something is wrong. This gives security teams much greater visibility into potential risks as they occur, and increases the chance you’ll detect and mitigate threats before they launch active cyberattacks. 2. Use risk registers to describe potential risks in detail A risk register is a project management tool that describes risks that could disrupt a project during execution. Project managers typically create the register during the project planning phase and then refer to it throughout execution. A risk register typically uses the following characteristics to describe individual risks: Description : A brief overview of the risk itself. Category: The formal classification of the risk and what it affects. Likelihood: How likely this risk is to take place. Analysis: What would happen if this risk occurred. Mitigation: What would the team need to do to respond in this scenario. Priority: How critical is this risk compared to others. The same logic applies to business initiatives both large and small. Using a risk register can help you identify and control unexpected occurrences that may derail the organization’s ongoing projects. If these projects are actively supervised by a project manager, risk registers should already exist for them. However, there may be many initiatives, tasks, and projects that do not have risk registers. In these cases, you may need to create them yourself. Part of the overall risk assessment process should include finding and consolidating these risk registers to get an idea of the kinds of disruptions that can take place at every level of the organization. You may find patterns in the types of security risks that you find described in multiple risk registers. This information should help you evaluate the business impact of common risks and find ways to mitigate those risks effectively. 3. Prioritize proactive, low-cost risk remediation when possible Your organization can’t afford to prevent every single risk there is. That would require an unlimited budget and on-demand access to technical specialist expertise. However, you can prevent certain high-impact risks using proactive, low-cost policies that can make a significant difference in your overall security posture. You should take these opportunities when they present themselves. Password policies are a common example. Many organizations do not have sufficiently robust password policies in place. Cybercriminals know this –that’s why dictionary-based credential attacks still occur. If employees are reusing passwords across accounts or saving them onto their devices in plaintext, it’s only a matter of time before hackers notice. At the same time, upgrading a password policy is not an especially expensive task. Even deploying an enterprise-wide password manager and investing in additional training may be several orders of magnitude cheaper than implementing a new SIEM or similarly complex security platform. Your cybersecurity risk assessment will likely uncover many opportunities like this one. Take a close look at things like password policies, change management , and security patch update procedures and look for easy, low-cost projects that can provide immediate security benefits without breaking your budget. Once you address these issues, you will be in a much better position to pursue larger, more elaborate security implementations. 4. Treat risk management as an ongoing process Every year, cybercriminals leverage new tactics and techniques against their victims. Your organization’s security team must be ready to address the risks of emerging malware, AI-enhanced phishing messages, elaborate supply chain attacks, and more. As hackers improve their attack methodologies, your organization’s risk profile shifts. As the level of risk changes, your approach to information security must change as well. This means developing standards and controls that adjust according to your organization’s actual information security risk environment. Risk analysis should not be a one-time event, but a continuous one that delivers timely results about where your organization is today – and where it may be in the future. For example, many security teams treat firewall configuration and management as a one-time process. This leaves them vulnerable to emerging threats that they may not have known about during the initial deployment. Part of your risk management strategy should include verifying existing security solutions and protecting them from new and emerging risks. 5. Invest in penetration testing to discover new vulnerabilities There is more to discovering new risks than mapping your organization’s assets to known vulnerabilities and historical data breaches. You may be vulnerable to zero-day exploits and other weaknesses that won’t be immediately apparent. Penetration testing will help you discover and assess risks that you can’t find out about otherwise. Penetration testing mitigates risk by pinpointing vulnerabilities in your environment and showing how hackers could exploit them. Your penetration testing team will provide a comprehensive report showing you what assets were compromised and how. You can then use this information to close those security gaps and build a stronger security posture as a result. There are multiple kinds of penetration testing. Depending on your specific scenario and environment, you may invest in: External network penetration testing focuses on the defenses your organization deploys on internet-facing assets and equipment. The security of any business application exposed to the public may be assessed through this kind of test. Internal network penetration testing determines how cybercriminals may impact the organization after they gain access to your system and begin moving laterally through it. This also applies to malicious insiders and compromised credential attacks. Social engineering testing looks specifically at how employees respond to attackers impersonating customers, third-party vendors, and internal authority figures. This will help you identify risks associated with employee security training . Web application testing focuses on your organization’s web-hosted applications. This can provide deep insight into how secure your web applications are, and whether they can be leveraged to leak sensitive information. 6. Demonstrate risk tolerance by implementing the NIST Cybersecurity Framework The National Institute of Standards and Technology publishes one of the industry’s most important compliance frameworks for cybersecurity risk mitigation. Unlike similar frameworks like PCI DSS and GDPR, the NIST Cybersecurity Framework is voluntary – you are free to choose when and how you implement its controls in your organization. This set of security controls includes a comprehensive, flexible approach to risk management. It integrates risk management techniques across multiple disciplines and combines them into an effective set of standards any organization can follow. As of 2023, the NIST Risk Management Framework focuses on seven steps: Prepare the organization to change the way it secures its information technology solutions. Categorize each system and the type of information it processes according to a risk and impact analysis/ Select which NIST SP 800-53 controls offer the best data protection for the environment. Implement controls and document their deployment. Assess whether the correct controls are in place and operating as intended. Authorize the implementation in partnership with executives, stakeholders, and IT decision-makers. Monitor control implementations and IT systems to assess their effectiveness and discover emerging risks. 7. Don’t forget to consider false positives in your risk assessment False positives refer to vulnerabilities and activity alerts that have been incorrectly flagged. They can take many forms during the cybersecurity risk assessment process – from vulnerabilities that don’t apply to your organization’s actual tech stack to legitimate traffic getting blocked by firewalls. False positives can impact risk assessments in many ways. The most obvious problem they present is skewing your assessment results. This may lead to you prioritizing security controls against threats that aren’t there. If these controls are expensive or time-consuming to deploy, you may end up having an uncomfortable conversation with key stakeholders and decision-makers later on. However, false positives are also a source of security risks. This is especially true with automated systems like next-generation firewalls , extended detection and response (XDR) solutions, and Security Orchestration, Automation, and Response (SOAR) platforms. Imagine one of these systems detects an outgoing video call from your organization. It flags the connection as suspicious and begins investigating it. It discovers the call is being made from an unusual location and contains confidential data, so it blocks the call and terminates the connection. This could be a case of data exfiltration, or it could be the company CEO presenting a report to stockholders while traveling. Most risk assessments don’t explore the potential risk of blocking high-level executive communications or other legitimate communications due to false positives. Use AlgoSec to Identify and Assess Network Security Risks More Accurately Building a comprehensive risk management strategy is not an easy task. It involves carefully observing the way your organization does business and predicting how cybercriminals may exploit those processes. It demands familiarity with almost every task, process, and technology the organization uses, and the ability to simulate attack scenarios from multiple different angles. There is no need to accomplish these steps manually. Risk management platforms like AlgoSec’s Firewall Analyzer can help you map business applications throughout your network and explore attack simulations with detailed “what-if” scenarios. Use Firewall Analyzer to gain deep insight into how your organization would actually respond to security incidents and unpredictable events, then use those insights to generate a more complete risk management approach. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Optimizing Network Security and Accelerating Operations for a Major Telecommunications Provider - AlgoSec

    Optimizing Network Security and Accelerating Operations for a Major Telecommunications Provider Case Study Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Micro-segmentation From strategy to execution - AlgoSec

    Micro-segmentation From strategy to execution Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | Are VLANs secure? VLAN security best practices

    Virtual Local Area Network (VLAN) Security Issues You’re in no doubt familiar with Virtual Local Area Network (VLAN) technology and its... Information Security Are VLANs secure? VLAN security best practices Kevin Beaver 2 min read Kevin Beaver Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 9/23/14 Published Virtual Local Area Network (VLAN) Security Issues You’re in no doubt familiar with Virtual Local Area Network (VLAN) technology and its ability to segment traffic within your network. It’s one of those decades-old technologies that businesses have come to rely on to reduce costs, minimize network broadcast domains, and protect certain systems from others. It sounds good on paper but it’s rare to see a VLAN environment that’s truly configured in the right way in order to realize its intended benefits. For example, I’ve seen some networks segmented by physical switches rather than using logical VLANs configured within each managed switch. This means that anyone on the same physical switch/broadcast domain can see every host on that segment. And if they want to see all traffic, it’s often just a matter of using Cain & Abel’s ARP Poison Routing feature . This is not an effective way to manage network devices and there’s no way to prevent inadvertent connections to the wrong segment during network upgrades, troubleshooting, and the like. It becomes a jumbled mess that negates any perceived switching or VLAN benefits. Furthermore, many “virtual” networks allow anyone to hop between segments if they know the IP addressing scheme. For example, say a user is on the 10.10.10.x network and he wants to get onto the production network of 10.0.0.x. No problem… he just points his Web browser, his vulnerability scanner, or whatever to 10.0.0.x and he’s good to go. Worst case, he might have to configure his system with a static IP address on that network, but that’s simple enough to do. This configuration may be considered a “VLAN” that’s managing broadcast traffic but there are no real ACLs, firewall rules, or packet tagging to prevent unauthorized access by internal attackers, malware, and the like. The network is basically flat with no policies and little to no security between any of the network segments and systems. Another thing to remember is that many VLANs are used to partition networks into distinctive segments to separate business units and their unique data sets. Even if the technical aspects of the VLAN configuration are spot on, these environments are often defined at a very high level without involving the actual business unit managers or information owners, therefore there are often security gaps in the segmentation. This means that information specific to a business unit and believed to be isolated is often anything but – it may well be scattered across numerous other VLANs and network hosts within those segments. How does this happen? Convenience and mobility and general carelessness. Users copy information to places where they can work on it and end up copying it to systems outside of the intended VLAN domain or to different hosts on other VLANs. IT may even copy information for backup or test purposes. Either way, confidential information often ends up on unprotected “islands” that no one knows about until it’s too late. Network security based on VLAN technology can work if it’s done properly. And while it’s not perfect, it can add another layer of security to your environment, one that can make the difference between breach and no breach. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

bottom of page