top of page

Search results

675 results found with an empty search

  • AlgoSec | How AppSec Network Engineers Can Align Security with the Business

    Eric Jeffery, AlgoSec’s regional solutions engineer, gives his view on the pivotal role of AppSec network engineers and how they can... Application Connectivity Management How AppSec Network Engineers Can Align Security with the Business Eric Jeffery 2 min read Eric Jeffery Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 7/13/22 Published Eric Jeffery, AlgoSec’s regional solutions engineer, gives his view on the pivotal role of AppSec network engineers and how they can positively impact the business It may surprise many people but the number one skills gap hampering today’s application security network engineers is primarily centred around the soft skills which includes communication, writing, presentation, team building and critical thinking. Why is this so important? Because first and foremost, their goal is to manage the organization’s security posture by deploying the best application security tools and technologies for the specific security and growth needs of the business. Keep things safe but don’t get in the way of revenue generation What an application security network engineer should not do is get in the way of developing new business-critical or revenue generating applications. At the same time, they need to understand that they have a leadership role to play in steering a safe and profitable course for the business. Starting with an in depth understanding of all wired traffic, AppSec network engineers need to know what applications are running on the network, how they communicate, who they communicate with and how to secure the traffic and connectivity flow associated with each one of them. An AppSec network engineer’s expertise should extend much more than mastering simple applications such as FTP and SSH. Rather, business traffic continuity should sit at the pinnacle of their responsibilities. There’s a lot of revenue generating traffic that they need to understand and put the right guardrails to protect it. However, equally as important, they need to make sure that the traffic is not hindered by outdated or irrelevant rules and policies, to avoid any negative financial impact on the organization. Layers of expertise beyond the OSI model A good starting point for any AppSec network engineer is to acquire a commanding knowledge of the seven layers of the OSI model, especially Layer 6 which covers Presentation. In practical terms, this means that they should have a thorough understanding of the network and transport layers – knowing what traffic is going across the network and why. It’s also helpful to have basic scripting knowledge and an understanding of simple scripts such as a cron job for scheduling tasks. It could also be useful to know some basic level programming like Perl and PHP. Beyond the network skills, AppSec network engineers should grasp the business vertical in which they operate. Once they gain an understanding of the business DNA and the applications that make it tick, then they can add real value to their organizations. What’s on the network vs. what should be on the network Should AppSec network engineers be expected to understand business and applications? Absolutely. With this level of skill and knowledge, they can help the business progress securely by corelating what is actually in the network environment versus what should be in the environment. Once they have clear understanding, they can clean up then environment and optimize network performance with enhanced security. This becomes more critical as organizations grow and develop, often allowing too much unnecessary traffic into the environment. Typically, this is how the scenario plays out: Applications are added or removed (decommissioned), or a new vendor or solution is brought on board and the firewall turns into a de facto router. The end result of such often leads to new vulnerabilities and too many unnecessary threat vectors. This is precisely where the aforementioned soft skills come in – an AppSec network engineer should be able to call out practices that don’t align with business goals. It’s also incumbent upon organizations to offer soft skills training to help their AppSec network engineers become more valuable to their teams. Need an application view to be effective in securing the business When firewalls become de facto routers, organizations end up relying on other areas for security. However, security needs to be aligned with the applications to prevent cyber attacks from getting onto the network and then from moving laterally across the network, should they manage to bypass the firewalls. All too often, east-west security is inadequate and therefore, AppSec network engineers need to look at network segmentation and application segmentation as part of a holistic network security strategy. The good news is that there are some great new technologies that can help with segmenting an internal network. The lesser good news is that there’s a danger in the thinking that by bolting on new tools, the problem will be solved. So often these tools are only partially deployed before the team moves onto the next “latest and the greatest” solution. When exploring new technologies, AppSec network engineers must ask themselves the following: Is there a matching use case for each solution? Will procurement of another tool lead to securing the environment or will it just be another useless “flavor of the month” tool? Irregardless, once the new technology solution is acquired, it is imperative to align the right skilful people with this technology to enable the organization to intelligently secure the whole environment before moving onto a new tool. To further hone this point, celebrating the introduction of a new firewall is superfluous if at the end of the day, it does not utilize the right rules and policies. Ushering some of these new technologies without proper deployment will only leave gaping holes and give organizations a false sense of security, exposing them to continuous risks. Don’t put the cloud native cart before the horse The role of an AppSec network engineer becomes even more critical when moving to the cloud. It starts with asking probing questions: What are the applications in the business and why are we moving them to the cloud? Is it for scalability, speed of access or to update a legacy system? Will the business benefit from the investment and the potential performance impact? It’s also important to consider the architecture in the cloud: Is it containerized, public cloud, private cloud or hybrid? Once you get definitive answers to these questions, create reference architectures and get senior level buy-in. Finally, think about the order in which the enterprise migrates applications to the cloud and maybe start with some non-critical applications that only affect a small number of locations or people before risking moving critical revenue generating applications. Don’t put the cart before the horse. DevSecOps: We should be working together; you can be sure the criminals are… Network application security is complicated enough without introducing internal squabbles over resources or sacrificing security for speed. Security teams and development teams need to work together and focus on what is best for your business. Again, this where the soft skills like teamwork, communications and project management come into play. The bottom line is this: Understand bad actors and prepare for the worst. The bad guys are just chomping at the bit, waiting for your organizations to make the next mistake. To beat them, DevSecOps teams must leverage all the resources they have available. Future promise or false sense of security? There are some exciting new technologies to look forward to in the horizon to help secure the application environment. Areas like quantum computing, machine learning, AI and blockchain show great promise in outfoxing the cyber criminals in the healthcare and financial services industries. It is expected that the AppSec network engineer will play a vital role in the viability of these new technologies. Yet, the right technology will still need to be applied to the right use case correctly and then fully deployed to in order see any effective results. The takeaway So much of the role of the AppSec network engineer is about taking a cold hard look at the goals of the business and asking some challenging questions. It all starts with “what’s right for the business?” rather than “what’s the latest technology we can get our hands on?” To be an effective AppSec network engineer, individuals should not only know the corporate network inside out, but they also must have an overall grasp of applications and the applicable business cases they support. Furthermore, collaboration with developers and operations (DevOps) becomes an agent for rapid deployment of revenue generating or mission critical applications. But it still goes back to the soft skills. To protect the business from taking needless security risks and demand a seat at the decision-making table, AppSec network engineers need to apply strong leadership, project management and communications skills To learn more on the importance of AppSec network engineers to your organization’s cybersecurity team, watch the following video Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | How to Make Container Security Threats More Containable

    As cloud adoption and digital transformation increases, more sensitive data from applications is being stored in data containers. This is... Application Connectivity Management How to Make Container Security Threats More Containable Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 9/8/22 Published As cloud adoption and digital transformation increases, more sensitive data from applications is being stored in data containers. This is why effective container security controls to securely manage application connectivity is an absolute must. AlgoSec CTO and Co-Founder, Prof. Avishai Wool provides some useful container security best practices to help you do just that. What is Container Security? Organizations, now more than ever, are adopting container technology. Instead of powering up servers and instances in the cloud, they are using containers to run business applications. Securing these is equally as important as securing other digital assets that the business is dependent on. There are two main pillars to think about: The code: you want to be able to scan the containers and make sure that they are running legitimate code without any vulnerabilities. The network: you need to control access to and from the container (what it can connect to), both inside the same cluster, other clusters, and different parts of the network. How critical is container security to managing application connectivity risks? To understand the role of container security within the overall view of network security, there are three points to consider. First, if you’re only concerned about securing the containers themselves, then you’re looking at nano-segmentation , which involves very granular controls inside the applications. Second, if you’re thinking about a slightly wider scope then you may be more concerned with microsegmentation , where you are segmenting between clusters or between servers in a single environment. Here you will want to enforce security controls that determine the allowable communication between specific endpoints at specific levels. Finally, if the communication needs to go further, from a container inside one cluster within one cloud environment to an asset that’s outside of the data center, then that might need to go through broader segmentation controls such as zoning technologies, security groups or a firewall at the border. So, there are all these layers where you can place network security policies. When you’re looking at a particular connectivity request (say for a new version of an application) from the point of view of a given container you should ask yourself: what is the container connected to? What is it communicating with? Where are those other sides of the connectivity placed? Based on that determination, you will then know which security controls you need to configure to allow that connectivity through the network. How does containerization correlate with application centric security policy management? There are a number of different aspects to the relationship between container security and application security. If an application uses containers to power up workloads then container security is very much an integral part of application security. When you’re adding new functionality to an application, powering up additional containers, asking containers to perform new tasks whereby they need to connect to additional assets, then the connectivity of those containers needs to be secured. And security controls need to be regulated or changed based on what the application needs them to do. Another factor in this relationship is the structure of the application. All the containers that run and support the application are often located in one cluster or a micro-segment of the network. So, much of the communication takes place inside that cluster, between one container or another, all in the same cluster. However, some of it can go to another cluster or somewhere that’s not even containerized. This is actually a good thing from an application point of view as the container structure can be used to understand the application structure as well. Not sure about container orchestration? Here’s what to know Container orchestration is part of a bigger orchestration play which is, in general, related to the concept of infrastructure as code. You want to be able to power up an environment with all the assets it requires, and have it function simultaneously so you can duplicate it. There are various orchestration technologies that can be used to deploy the security policies for containers , which is an excellent way to maintain container-based applications in a consistent and repeatable manner. Then if you need to double it or multiply it by 100, you can get cookie-cutter copies of the same thing. How will container security solutions play out in the future? Organizations today have the technology to enforce security controls at the container level, but these controls are very granular and it’s time-consuming to set policies and enforce them, particularly with issues like staff or skills shortages. Looking ahead, companies are likely to take a hierarchical view where container-based security is controlled at the application level by app owners or developers, and at the broader levels to ensure that the measures deployed throughout the network have the same degree of sophistication. Procedures and tooling are all evolving, so we don’t have a definitive answer as to how this will all end up. What are organizations going to be doing? Where will they place their controls? Who has the power to make the changes? When newer technologies are deployed, customer adoption will be crucial to understanding what makes the most sense. This will be interesting as there will be multiple scenarios to help companies master their security blueprint as we move forward. To learn how the use of containerization as a strategy can help reduce risk and drive application-centric security, check out this video . Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | 10 Best Firewall Monitoring Software for Network Security

    Firewall monitoring is an important part of maintaining strict network security. Every firewall device has an important role to play... Firewall Policy Management 10 Best Firewall Monitoring Software for Network Security Asher Benbenisty 2 min read Asher Benbenisty Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 10/24/23 Published Firewall monitoring is an important part of maintaining strict network security. Every firewall device has an important role to play protecting the network, and unexpected flaws or downtime can put the entire network at risk. Firewall monitoring solutions provide much-needed visibility into the status and behavior of your network firewall setup. They make the security of your IT infrastructure observable, enabling you to efficiently deploy resources towards managing and securing traffic flows. This is especially important in environments with multiple firewall hardware providers, where you may need to verify firewalls, routers, load balancers, and more from a central interface. What is the role of Firewall Monitoring Software? Every firewall in your network is a checkpoint that verifies traffic according to your security policy. Firewall monitoring software assesses the performance and reports the status of each firewall in the network. This is important because a flawed or defective firewall can’t do its job properly. In a complex enterprise IT environment, dedicating valuable resources to manually verifying firewalls isn’t feasible. The organization may have hardware firewalls from Juniper or Cisco, software firewalls from Check Point, and additional built-in operating system firewalls included with Microsoft Windows. Manually verifying each one would be a costly and time-consuming workflow that prevents limited security talent from taking on more critical tasks. Additionally, admins would have to wait for individual results from each firewall in the network. In the meantime, the network would be exposed to vulnerabilities that exploit faulty firewall configurations. Firewall monitoring software solves this problem using automation . By compressing all the relevant data from every firewall in the network into a single interface, analysts and admins can immediately detect security threats that compromise firewall security. The Top 10 Firewall Monitoring Tools Right Now 1. AlgoSec AlgoSec enables security teams to visualize and manage complex hybrid networks . It uses a holistic approach to provide instant visibility to the entire network’s security configuration, including cloud and on-premises infrastructure. This provides a single pane of glass that lets security administrators preview policies before enacting them and troubleshoot issues in real-time. 2. Wireshark Wireshark is a widely used network protocol analyzer. It can capture and display the data traveling back and forth on a network in real-time. While it’s not a firewall-specific tool, it’s invaluable for diagnosing network issues and understanding traffic patterns. As an open-source tool, anyone can download WireShark for free and immediately start using it to analyze data packets. 3. PRTG Network Monitor PRTG is known for its user-friendly interface and comprehensive monitoring capabilities. It supports SNMP and other monitoring methods, making it suitable for firewall monitoring. Although it is an extensible and customizable solution, it requires purchasing a dedicated on-premises server. 4. SolarWinds Firewall Security Manager SolarWinds offers a suite of network management tools, and their Firewall Security Manager is specifically designed for firewall monitoring and management. It helps with firewall rule analysis, change management, and security policy optimization. It is a highly configurable enterprise technology that provides centralized incident management features. However, deploying SolarWinds can be complex, and the solution requires specific on-premises hardware to function. 5. FireMon FireMon is a firewall management and analysis platform. It provides real-time visibility into firewall rules and configurations, helping organizations ensure that their firewall policies are compliant and effective. FireMon minimizes security risks related to policy misconfigurations, extending policy management to include multiple security tools, including firewalls. 6. ManageEngine ManageEngine’s OpManager offers IT infrastructure management solutions, including firewall log analysis and reporting. It can help you track and analyze traffic patterns, detect anomalies, and generate compliance reports. It is intuitive and easy to use, but only supports monitoring devices across multiple networks with its higher-tier Enterprise Edition. It also requires the installation of on-premises hardware. 7. Tufin Tufin SecureTrack is a comprehensive firewall monitoring and management solution. It provides real-time monitoring, change tracking, and compliance reporting for firewalls and other network devices. It can automatically discover network assets and provide comprehensive information on network assets, but may require additional configuration to effectively monitor complex enterprise networks. 8. Cisco Firepower Management Center If you’re using Cisco firewalls, the Firepower Management Center offers centralized management and monitoring capabilities. It provides insights into network traffic, threats, and policy enforcement. Cisco simplifies network management and firewall monitoring by offering an intuitive centralized interface that lets admins control Cisco firewall devices directly. 9. Symantec Symantec (now part of Broadcom) offers firewall appliances with built-in monitoring and reporting features. These appliances are known for providing comprehensive coverage to endpoints like desktop workstations, laptops, and mobile devices. Symantec also provides some visibility into firewall configurations, but it is not a dedicated service built for this purpose. 10. Fortinet Fortinet’s FortiAnalyzer is designed to work with Fortinet’s FortiGate firewalls. It provides centralized logging, reporting, and analysis of network traffic and security events. This provides customers with end-to-end visibility into emerging threats on their networks and even includes useful security automation tools. It’s relatively easy to deploy, but integrating it with a complex set of firewalls may take some time. Benefits of Firewall Monitoring Software Enhanced Security Your firewalls are your first line of defense against cyberattacks, preventing malicious entities from infiltrating your network. Threat actors know this, and many sophisticated attacks start with attempts to disable firewalls or overload them with distributed denial of service (DDoS) attacks. Without a firewall monitoring solution in place, you may not be aware such an attack is happening until it’s too late. Even if your firewalls are successfully defending against the attack, your detection and response team should be ready to start mitigating risk the moment the attack is launched. Traffic Control Firewalls can add strain and latency to network traffic. This is especially true of software firewalls, which have to draw computing resources from the servers they protect. Over time, network congestion can become an expensive obstacle to growth, creating bottlenecks that reduce the efficiency of every device on the network. Improperly implemented firewalls can play a major role in these bottlenecks because they have to verify every data packet transferred through them. With firewall monitoring, system administrators can assess the impact of firewall performance on network traffic and use that data to more effectively balance network loads. Organizations can reduce overhead by rerouting data flows and finding low-cost storage options for data they don’t constantly need access to. Real-time Alerts If attackers manage to break through your defenses and disable your firewall, you will want to know immediately. Part of having a strong security posture is building a multi-layered security strategy. Your detection and response team will need real-time updates on the progress of active cyberattacks. They will use this information to free the resources necessary to protect the organization and mitigate risk. Organizations that don’t have real-time firewall monitoring in place won’t know if their firewalls fail against an ongoing attack. This can lead to a situation where the CSIRT team is forced to act without clear knowledge about what they’re facing. Performance Monitoring Poor network performance can have a profound impact on the profitability of an enterprise-sized organization. Drops in network quality cost organizations more than half a million dollars per year , on average. Misconfigured firewalls can contribute to poor network performance if left unaddressed while the organization grows and expands its network. Properly monitoring the performance of the network requires also monitoring the performance of the firewalls that protect it. System administrators should know if overly restrictive firewall policies prevent legitimate users from accessing the data they need. Policy Enforcement Firewall monitoring helps ensure security policies are implemented and enforced in a standardized way throughout the organization. They can help discover the threat of shadow IT networks made by users communicating outside company-approved devices and applications. This helps prevent costly security breaches caused by negligence. Advanced firewall monitoring solutions can also help security leaders create, save, and update policies using templates. The best of these solutions enable security teams to preview policy changes and research elaborate “what-if” scenarios, and update their core templates accordingly. Selecting the Right Network Monitoring Software When considering a firewall monitoring service, enterprise security leaders should evaluate their choice based on the following features: Scalability Ensure the software can grow with your network to accommodate future needs. Ideally, both your firewall setup and the monitoring service responsible for it can grow at the same pace as your organization. Pay close attention to the way the organization itself is likely to grow over time. A large government agency may require a different approach to scalability than an acquisition-oriented enterprise with many separate businesses under its umbrella. Customizability Look for software that allows you to tailor security rules to your specific requirements. Every organization is unique. The appropriate firewall configuration for your organization may be completely different than the one your closest competitor needs. Copying configurations and templates between organizations won’t always work. Your network monitoring solution should be able to deliver performance insights fine-tuned to your organization’s real needs. If there are gaps in your monitoring capabilities, there are probably going to be gaps in your security posture as well. Integration Compatibility with your existing network infrastructure is essential for seamless operation. This is another area where every organization is unique. It’s very rare for two organizations to use the same hardware and software tools, and even then there may be process-related differences that can become obstacles to easy integration. Your organization’s ideal firewall monitoring solution should provide built-in support for the majority of the security tools the organization uses. If there are additional tools or services that aren’t supported, you should feel comfortable with the process of creating a custom integration without too much difficulty. Reporting Comprehensive reporting features provide insights into network activity and threats. It should generate reports that fit the formats your analysts are used to working with. If the learning curve for adopting a new technology is too high, achieving buy-in will be difficult. The best network monitoring solutions provide a wide range of reports into every aspect of network and firewall performance. Observability is one of the main drivers of value in this kind of implementation, and security leaders have no reason to accept compromises here. AlgoSec for Real-time Network Traffic Analysis Real-time network traffic monitoring reduces security risks and enables faster, more significant performance improvements at enterprise scale. Security professionals and network engineers need access to clear, high-quality insight on data flows and network performance, and AlgoSec delivers. One way AlgoSec deepens the value of network monitoring is through the ability to connect applications directly to security policy rules . When combined with real-time alerts, this provides deep visibility into the entire network while reducing the need to conduct time-consuming manual queries when suspicious behaviors or sub-optimal traffic flows are detected. Firewall Monitoring Software: FAQs How Does Firewall Monitoring Software Work? These software solutions manage firewalls so they can identify malicious traffic flows more effectively. They connect multiple hardware and software firewalls to one another through a centralized interface. Administrators can gather information on firewall performance, preview or change policies, and generate comprehensive reports directly. This enables firewalls to detect more sophisticated malware threats without requiring the deployment of additional hardware. How often should I update my firewall monitoring software? Regular updates are vital to stay protected against evolving threats. When your firewall vendor releases an update, it often includes critical security data on the latest emerging threats as well as patches for known vulnerabilities. Without these updates, your firewalls may become vulnerable to exploits that are otherwise entirely preventable. The same is true for all software, but it’s especially important for firewalls. Can firewall monitoring software prevent all cyberattacks? While highly effective, no single security solution is infallible. Organizations should focus on combining firewall monitoring software with other security measures to create a multi-layered security posture. If threat actors successfully disable or bypass your firewalls, your detection and response team should receive a real-time notification and immediately begin mitigating cyberattack risk. Is open-source firewall monitoring software a good choice? Open-source options can be cost-effective, but they may require more technical expertise to configure and maintain. This is especially true for firewall deployments that rely on highly customized configurations. Open-source architecture can make sense in some cases, but may present challenges to scalability and the affordability of hiring specialist talent later on. How do I ensure my firewall doesn’t block legitimate traffic? Regularly review and adjust your firewall rules to avoid false positives. Sophisticated firewall solutions include features for reducing false positives, while simpler firewalls are often unable to distinguish genuine traffic from malicious traffic. Advanced firewall monitoring services can help you optimize your firewall deployment to reduce false positives without compromising security. How does firewall monitoring enhance overall network security? Firewalls can address many security threats, from distributed denial of service (DDoS) attacks to highly technical cross-site scripting attacks. The most sophisticated firewalls can even block credential-based attacks by examining outgoing content for signs of data exfiltration. Firewall monitoring allows security leaders to see these processes in action and collect data on them, paving the way towards continuous security improvement and compliance. What is the role of VPN audits in network security? Advanced firewalls are capable of identifying VPN connections and enforcing rules specific to VPN traffic. However, firewalls are not generally capable of decrypting VPN traffic, which means they must look for evidence of malicious behavior outside the data packet itself. Firewall monitoring tools can audit VPN connections to determine if they are harmless or malicious in nature, and enforce rules for protecting enterprise assets against cybercriminals equipped with secure VPNs . What are network device management best practices? Centralizing the management of network devices is the best way to ensure optimal network performance in a rapid, precise way. Organizations that neglect to centralize firewall and network device management have to manually interact with increasingly complex fleets of network hardware, software applications, and endpoint devices. This makes it incredibly difficult to make changes when needed, and increases the risks associated with poor change management when they happen. What are the metrics and notifications that matter most for firewall monitoring? Some of the important parameters to pay attention to include the volume of connections from new or unknown IP addresses, the amount of bandwidth used by the organization’s firewalls, and the number of active sessions on at any given time. Port information is especially relevant because so many firewall rules specify actions based on the destination port of incoming traffic. Additionally, network administrators will want to know how quickly they receive notifications about firewall issues and how long it takes to resolve those issues. What is the role of bandwidth and vulnerability monitoring? Bandwidth monitoring allows system administrators to find out which users and hosts consume the most bandwidth, and how network bandwidth is shared among various protocols. This helps track network performance and provides visibility into security threats that exploit bandwidth issues. Denial of service (DoS) attacks are a common cyberattack that weaponizes network bandwidth. What’s the difference between on-premises vs. cloud-based firewall monitoring? Cloud-based firewall monitoring uses software applications deployed as cloud-enabled services while on-premises solutions are physical hardware solutions. Physical solutions must be manually connected to every device on the network, while cloud-based firewall monitoring solutions can automatically discover assets and IT infrastructure immediately after being deployed. What is the role of configuration management? Updating firewall configurations is an important part of maintaining a resilient security posture. Organizations that fail to systematically execute configuration changes on all assets on the network run the risk of forgetting updates or losing track of complex policies and rules. Automated firewall monitoring solutions allow admins to manage configurations more effectively while optimizing change management. What are some best practices for troubleshooting network issues? Monitoring tools offer much-needed visibility to IT professionals who need to address network problems. These tools help IT teams narrow down the potential issues and focus their time and effort on the most likely issues first. Simple Network Management Protocol (SNMP) monitoring uses a client-server application model to collect information running on network devices. This provides comprehensive data about network devices and allows for automatic discovery of assets on the network. What’s the role of firewall monitoring in Windows environments? Microsoft Windows includes simple firewall functionality in its operating system platform, but it is best-suited to personal use cases on individual endpoints. Organizations need a more robust solution for configuring and enforcing strict security rules, and a more comprehensive way to monitor Windows-based networks as a whole. Platforms like AlgoSec help provide in-depth visibility into the security posture of Windows environments. How do firewall monitoring tools integrate with cloud services? Firewall monitoring tools provide observability to cloud-based storage and computing services like AWS and Azure. Cloud-native monitoring solutions can ingest network traffic coming to and from public cloud providers and make that data available for security analysts. Enterprise security teams achieve this by leveraging APIs to automate the transfer of network performance data from the cloud provider’s infrastructure to their own monitoring platform. What are some common security threats and cyberattacks that firewalls can help mitigate? Since firewalls inspect every packet of data traveling through the network perimeter, they play a critical role detecting and mitigating many different threats and attacks. Simple firewalls can block unsophisticated denial-of-service (DoS) attacks and detect known malware variants. Next-generation firewalls can prevent data breaches by conducting deep packet analysis, identifying compromised applications and user accounts, and even blocking sensitive data from leaving the network altogether. What is the importance of network segmentation and IP address management? Network segmentation protects organizations from catastrophic data breaches by ensuring that even successful cyberattacks are limited in scope. If attackers compromise one part of the network, they will not necessarily have access to every other part. Security teams achieve segmentation in part by effectively managing network IP addresses according to a robust security policy and verifying the effects of policy changes using monitoring software. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Deconstructing the Complexity of Managing Hybrid Cloud Security

    The move from traditional data centers to a hybrid cloud network environment has revolutionized the way enterprises construct their... Hybrid Cloud Security Management Deconstructing the Complexity of Managing Hybrid Cloud Security Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 4/4/22 Published The move from traditional data centers to a hybrid cloud network environment has revolutionized the way enterprises construct their networks, allowing them to reduce hardware and operational costs, scale per business needs and be more agile. When enterprises choose to implement a hybrid cloud model, security is often one of the primary concerns. The additional complexity associated with a hybrid cloud environment can, in turn, make securing resources to a single standard extremely challenging. This is especially true when it comes to managing the behavioral and policy nuances of business applications . Moreover, hybrid cloud security presents an even greater challenge when organizations are unable to fully control the lifecycle of the public cloud services they are using. For instance, when an organization is only responsible for hosting a portion of its business-critical workloads on the public cloud and has little to no control over the hosting provider, it is unlikely to be able to enforce consistent security standards across both environments. Managing hybrid cloud security Hybrid cloud security requires an extended period of planning and investment for enterprises to become secure. This is because hybrid cloud environments are inherently complex and typically involve multiple providers. To effectively manage these complex environments, organizations will require a comprehensive approach to security that addresses each of the following challenges: Strategic planning and oversight : Policy design and enforcement across hybrid clouds Managing multiple vendor relationships and third-party security controls : Cloud infrastructure security controls, security products provided by cloud and third-party providers and third-party on-premise security vendor products. Managing security-enabling technologies in multiple environments : on-premise, public cloud and private cloud. Managing multiple stakeholders : CISO, IT/Network Security, SecOps, DevOps and Cloud teams. Workflow automation : Auto responding to changing business demands requiring provisioning of policy changes automatically and securely across the hybrid cloud estate. Optimizing security and agility : Aligning risk tolerance with the DevOps teams to manage business application security and connectivity. With these challenges in mind, here are 5 steps you can take to effectively address hybrid cloud security challenges. Step 1. Define the security objectives A holistic approach to high availability is focused on the two critical elements of any hybrid cloud environment: technology and processes. Defining a holistic strategy in a hybrid cloud environment has these advantages: Improved operational availability : Ensure continuous application connectivity, data, and system availability across the hybrid estate. Reduced risk : Understand threats to business continuity from natural disasters or facility disruptions. Better recovery : Maintain data consistency by mirroring critical data between primary locations in case of failure at one site through multiple backup sites. Step 2. Visualize the entire network topology The biggest potential point of failure for hybrid cloud deployment is where the public cloud and private environment offerings meet. This can result in a visual gap often due to disparities between in-house security protocols and third-party security standards, precluding SecOps teams from securing the connectivity of business applications. The solution lies in gaining complete visibility across the entire hybrid cloud estate. This requires having the right solution in place that can help SecOps teams discover, track and migrate application connectivity without regard for the underlying infrastructure. Step 3. Use automation for adaptability and scalability The ability to adapt and scale on demand is one of the most significant advantages of a hybrid cloud environment. Invariably, when considering the range of benefits of a hybrid cloud, it is difficult to conceptualize the power of scaling on demand. Still, enterprises can enjoy tremendous benefits when they correctly implement automation that can respond on-demand to necessary changes. With the right change automation solution, change requests can be easily defined and pushed through the workflow without disrupting the existing network security policy rules or introducing new potential risks. Step 4. Minimize the learning curb According to a 2021 Global Knowledge and IT Skills report , 76% of IT decision-makers experience critical skills gaps in their teams. Hybrid cloud deployment is a complicated process, with the largest potential point of failure being where in-house security protocols and third-party standards interact. If this gap is not closed, malicious actors or malware could slip through it. Meeting this challenge requires a unification of all provisions made to policy changes so that SecOps teams can become familiar with them, regardless of any new device additions to the network security infrastructure. This would be applicable to provisions associated with policy changes across all firewalls, segments, zones, micro‐segments, security groups and zones, and within each business application. Step 5. Get compliant Compliance cannot be guaranteed when the enterprise cannot monitor all vendors and platforms or enforce their policies in a standard manner. This can be especially challenging when attempting to apply compliance standardizations across an infrastructure that consists of a multi-vendor hybrid network environment. To address this issue, enterprises must get their SecOps teams to shift their focus away from pure technology management and toward a larger scale view that ensures that their network security policies consistently comply with regulatory requirements across the entire hybrid cloud estate. Summary Hybrid cloud security presents a significant—and often overlooked—challenge for enterprises. This is because hybrid cloud environments are inherently complex, involving multiple providers, and impact how enterprises manage their business applications and overall IT assets. To learn how to reach your optimal hybrid cloud security solution, read more and find out how you can simplify your journey. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Understanding network lifecycle management

    Behind every important business process is a solid network infrastructure that lets us access all of these services. But for an efficient... Application Connectivity Management Understanding network lifecycle management Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 7/4/23 Published Behind every important business process is a solid network infrastructure that lets us access all of these services. But for an efficient and available network, you need an optimization framework to maintain a strong network lifecycle. It can be carried out as a lifecycle process to ensure continuous monitoring, management, automation, and improvement. Keep in mind, there are many solutions to help you with connectivity management . Regardless of the tools and techniques you follow, there needs to be a proper lifecycle plan for you to be able to manage your network efficiently. Network lifecycle management directs you on reconfiguring and adapting your data center per your growing requirements. The basic phases of a network lifecycle In the simplest terms, the basic phases of a network lifecycle are Plan, Build, and Manage. These phases can also be called Design, Implement, and Operate (DIO). Now, in every single instance where you want to change your network, you repeat this process of designing, implementing, and managing the changes. And every subtask that is carried out as part of the network management can also follow the same lifecycle phases for a more streamlined process . Besides the simpler plan, build, and manage phases, certain network frameworks also provide additional phases depending on the services and strategies involved. ITIL framework ITIL stands for Information Technology Infrastructure Library, which is an IT management framework. ITIL put forth a similar lifecycle process focusing on the network services aspect. The phases, as per ITIL, are: Service strategy Service design Service transition Service operations Continual service improvement PPDIOO framework PPDIOO is a network lifecycle model proposed by Cisco, a learning network services provider. This framework adds to the regular DIO framework with several subtasks, as explained below. Plan Prepare The overall organizational requirements, network strategy, high-level conceptual architecture, technology identification, and financial planning are all carried out in this phase. Plan Planning involves identifying goal-based network requirements, user needs, assessment of any existing network, gap analysis, and more. The tasks are to analyze if the existing infrastructure or operating environment can support the proposed network solution. The project plan is then drafted to align with the project goals regarding cost, resources, and scope. Design Network design experts develop a detailed, comprehensive network design specification depending on the findings and project specs derived from previous phases. Build The build phase is further divided into individual implementation tasks as part of the network implementation activities. This can include procurement, integrating devices, and more. The actual network solution is built as per the design, focusing on ensuring service availability and security. Operate The operational phase involves network maintenance, where the design’s appropriateness is tested. The network is monitored and managed to maintain high availability and performance while optimizing operational costs. Optimize The operational phase gives important data that can be utilized to optimize the performance of the network implementation further. This phase acts as a proactive mechanism to identify and solve any flaws or vulnerabilities within the network. It may involve network redesign and thus start a new cycle as well. Why develop a lifecycle optimization plan? A lifecycle approach to network management has various use cases. It provides an organized process, making it more cost-effective and less disruptive to existing services. Reduced total network ownership cost Early on, planning and identifying the exact network requirements and new technologies allow you to carry out a successful implementation that aligns with your budget constraints. Since there is no guesswork with a proper plan, you can avoid redesigns and rework, thus reducing any cost overheads. High network availability Downtimes are a curse to business goals. Each second that goes by without access to the network can be bleeding money. Following a proper network lifecycle management model allows you to plan your implementation with less to no disruptions in availability. It also helps you update your processes and devices before they get into an outage issue. Proactive monitoring and management, as proposed by lifecycle management, goes a long way in avoiding unexpected downtimes. This also saves time with telecom troubleshooting. Better business agility Businesses that adapt better thrive better. Network lifecycle management allows you to take the necessary action most cost-effectively in case of any quick economic changes. It helps you prepare your systems and operations to accommodate the new network changes before they are implemented. It also provides a better continuous improvement framework to keep your systems up to date and adds to cybersecurity. Improved speed of access Access to the network, the faster it is, the better your productivity can be. Proper lifecycle management can improve service delivery efficiency and resolve issues without affecting business continuity. The key steps to network lifecycle management Let us guide you through the various phases of network lifecycle management in a step-by-step approach. Prepare Step 1: Identify your business requirements Establish your goals, gather all your business requirements, and arrive at the immediate requirements to be carried out. Step 2: Create a high-level architecture design Create the first draft of your network design. This can be a conceptual model of how the solution will work and need not be as detailed as the final design would be. Step 3: Establish the budget Do the financial planning for the project detailing the possible challenges, budget, and expected profits/outcomes from the project. Plan Step 4: Evaluate your current system This step is necessary to properly formulate an implementation plan that will be the least disruptive to your existing services. Gather all relevant details, such as the hardware and software apps you use in your network. Measure the performance and other attributes and assess them against your goal specifics. Step 5: Conduct Gap Analysis Measure the current system’s performance levels and compare them with the expected outcomes that you want to achieve. Step 6: Create your implementation plan With the collected information, you should be able to draft the implementation plan for your network solution. This plan should essentially contain the various tasks that must be carried out, along with information on milestones, responsibilities, resources, and financing options. Design Step 7: Create a detailed network design Expand on your initial high-level concept design to create a comprehensive and detailed network design. It should have all the relevant information required to implement your network solution. Take care to include all necessary considerations regarding your network’s availability, scalability, performance, security, and reliability. Ensure the final design is validated by a proper approval process before being okayed for implementation. Implementation Step 8: Create an implementation plan The Implementation phase must have a detailed plan listing all the tasks involved, the steps to rollback, time estimations, implementation guidelines, and all the other details on how to implement the network design. Step 9: Testing Before implementing the design in the production environment, starting with a lab setting is a good idea. Implement in a lab testing environment to check for any errors and how feasible it is to implement the design. Improve the design depending on the results of this step. Step 10: Pilot implementation Implement in an iterative process starting with smaller deployments. Start with pilot implementations, test the results, and if all goes well, you can move towards wide-scale implementation. Step 11: Full deployment When your pilot implementation has been successful, you can move toward a full-scale deployment of network operations. Operate Step 12: Measure and monitor When you move to the Operational phase, the major tasks will be monitoring and management. This is probably the longest phase, where you take care of the day-to-day operational activities such as: Health maintenance Fault detection Proactive monitoring Capacity planning Minor updates (MACs – Moves, Adds, and Changes) Optimize Step 13: Optimize the network design based on the collected metrics. This phase essentially kicks off another network cycle with its own planning, designing, workflows, and implementation. Integrate network lifecycle with your business processes First, you must understand the importance of network lifecycle management and how it impacts your business processes and IT assets. Understand how your business uses its network infrastructure and how a new feature could add value. For instance, if your employees work remotely, you may have to update your infrastructure and services to allow real-time remote access and support personal network devices. Any update or change to your network should follow proper network lifecycle management to ensure efficient network access and availability. Hence, it must be incorporated into the company’s IT infrastructure management process. As a standard, many companies follow a three-year network life cycle model where one-third of the network infrastructure is upgraded to keep up with the growing network demands and telecommunications technology updates. Automate network lifecycle management with AlgoSec AlgoSec’s unique approach can automate the entire security policy management lifecycle to ensure continuous, secure connectivity for your business applications. The approach starts with auto discovering application connectivity requirements, and then intelligently – and automatically – guides you through the process of planning changes and assessing the risks, implementing those changes and maintaining the policy, and finally decommissioning firewall rules when the application is no longer in use. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | The great Fastly outage

    Tsippi Dach, Director of Communications at AlgoSec, explores what happened during this past summer’s Fastly outage, and explores how your... Application Connectivity Management The great Fastly outage Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 9/29/21 Published Tsippi Dach, Director of Communications at AlgoSec, explores what happened during this past summer’s Fastly outage, and explores how your business can protect itself in the future. The odds are that before June 8th you probably hadn’t heard of Fastly unless you were a customer. It was only when swathes of the internet went down with the 503: Service Unavailable error message that the edge cloud provider started to make headlines . For almost an hour, sites like Amazon and eBay were inaccessible, costing millions of dollars’ worth of revenue. PayPal, which processed roughly $106 million worth of transactions per hour throughout 2020, was also impacted, and disruption at Shopify left thousands of online retail businesses unable to serve customers. While the true cost of losing a significant portion of the internet for almost one hour is yet to be tallied, we do know what caused it. What is Fastly and why did it break the internet? Fastly is a US-based content distribution network (CDN), sometimes referred to as an ‘edge cloud provider.’ CDNs relieve the load on a website’s servers and ostensibly improve performance for end-users by caching copies of web pages on a distributed network of servers that are geographically closer to them. The downside is that when a CDN goes down – due to a configuration error in Fastly’s case – it reveals just how vulnerable businesses are to forces outside of their control. Many websites, perhaps even yours, are heavily dependent on a handful of cloud-based providers. When these providers experience difficulties, the consequences for your business are amplified ten-fold. Not only do you run the risk of long-term and costly disruption, but these weak links can also provide a golden opportunity for bad actors to target your business with malicious software that can move laterally across your network and cause untold damage. How micro-segmentation can help The security and operational risks caused by these outages can be easily mitigated by implementing plans that should already be part of an organization’s cyber resilience strategy. One aspect of this is micro-segmentation , which is regarded as one of the most effective methods to limit the damage of an intrusion or attack and therefore limit large-scale downtime from configuration misfires and cyberattacks. Micro-segmentation is the act of creating secure “zones” in data centers and cloud deployments that allow your company to isolate workloads from one another. In effect, this makes your network security more compartmentalized, so that if a bad actor takes advantage of an outage in order to breach your organization’s network, or user error causes a system malfunction, you can isolate the incident and prevent lateral impact. Simplifying micro-segmentation with AlgoSec Security Management Suite The AlgoSec Security Management Suite employs the power of automation to make it easy for businesses to define and enforce their micro-segmentation strategy, ensuring that it does not block critical business services, and also meets compliance requirements. AlgoSec supports micro-segmentation by: Mapping the applications and traffic flows across your hybrid network Identifying unprotected network flows that do not cross any firewall and are not filtered for an application Automatically identifying changes that will violate the micro-segmentation strategy Ensuring easy management of network security policies across your hybrid network Automatically implementing network security policy changes Automatically validating changes Generating a custom report on compliance with the micro-segmentation policy Find out more about how micro-segmentation can help you boost your security posture, or request your personal demo . Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Enhancing container security: A comprehensive overview and solution

    In the rapidly evolving landscape of technology, containers have become a cornerstone for deploying and managing applications... Cloud Network Security Enhancing container security: A comprehensive overview and solution Nitin Rajput 2 min read Nitin Rajput Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. cloudsecurity, cnapp, networksecurity Tags Share this article 1/23/24 Published In the rapidly evolving landscape of technology, containers have become a cornerstone for deploying and managing applications efficiently. However, with the increasing reliance on containers, understanding their intricacies and addressing security concerns has become paramount. In this blog, we will delve into the fundamental concept of containers and explore the crucial security challenges they pose. Additionally, we will introduce a cutting-edge solution from our technology partner, Prevasio, that empowers organizations to fortify their containerized environments. Understanding containers At its core, a container is a standardized software package that seamlessly bundles and isolates applications for deployment. By encapsulating an application’s code and dependencies, containers ensure consistent performance across diverse computing environments. Notably, containers share access to an operating system (OS) kernel without the need for traditional virtual machines (VMs), making them an ideal choice for running microservices or large-scale applications. Security concerns in containers Container security encompasses a spectrum of risks, ranging from misconfigured privileges to malware infiltration in container images. Key concerns include using vulnerable container images, lack of visibility into container overlay networks, and the potential spread of malware between containers and operating systems. Recognizing these challenges is the first step towards building a robust security strategy for containerized environments. Introducing Prevasio’s innovative solution In collaboration with our technology partner Prevasio, we’ve identified an advanced approach to mitigating container security risks. Prevasio’s Cloud-Native Application Protection Platform (CNAPP) is an unparalleled, agentless solution designed to enhance visibility into security and compliance gaps. This empowers cloud operations and security teams to prioritize risks and adhere to internet security benchmarks effectively. Dynamic threat protection for containers Prevasio’s focus on threat protection for containers involves a comprehensive static and dynamic analysis. In the static analysis phase, Prevasio meticulously scans packages for malware and known vulnerabilities, ensuring that container images are free from Common Vulnerabilities and Exposures (CVEs) or viruses during the deployment process. On the dynamic analysis front, Prevasio employs a multifaceted approach, including: Behavioral analysis : Identifying malware that evades static scanners by analyzing dynamic payloads. Network traffic inspection : Intercepting and inspecting all container-generated network traffic, including HTTPS, to detect any anomalous patterns. Activity correlation : Establishing a visual hierarchy, presented as a force-directed graph, to identify problematic containers swiftly. This includes monitoring new file executions and executed scripts within shells, enabling the identification of potential remote access points. In conclusion, container security is a critical aspect of modern application deployment. By understanding the nuances of containers and partnering with innovative solutions like Prevasio’s CNAPP, organizations can fortify their cloud-native applications, mitigate risks, and ensure compliance in an ever-evolving digital landscape. #cloudsecurity #CNAPP #networksecurity Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Cloud Security Architecture: Methods, Frameworks, & Best Practices

    Cloud threats increased by 95 percent in 2022 alone! At a time when many organizations are moving their resources to the cloud and... Cloud Security Cloud Security Architecture: Methods, Frameworks, & Best Practices Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 8/8/23 Published Cloud threats increased by 95 percent in 2022 alone! At a time when many organizations are moving their resources to the cloud and security threats are at an all-time high, focusing on your cloud security architecture has never been more critical. While cloud adoption has revolutionized businesses, it has also brought complex challenges. For example, cloud environments can be susceptible to numerous security threats. Besides, there are compliance regulations that you must address. This is why it’s essential to implement the right methods, frameworks, and best practices in cloud environments. Doing so can protect your organization’s sensitive cloud resources, help you meet compliance regulations, and maintain customer trust. Understanding Cloud Security Architecture Cloud security architecture is the umbrella term that covers all the hardware, software, and technologies used to protect your cloud environment. It encompasses the configurations and secure activities that protect your data, workloads, applications, and infrastructure within the cloud. This includes identity and access management (IAM), application and data protection, compliance monitoring, secure DevOps, governance, and physical infrastructure security. A well-defined security architecture also enables manageable decompositions of cloud deployments, including mixed SaaS, PaaS, and IaaS deployments. This helps you highlight specific security needs in each cloud area. Additionally, it facilitates integration between clouds, zones, and interfaces, ensuring comprehensive coverage of all deployment aspects. Cloud security architects generally use a layered approach when designing cloud security. Not only does this improve security, but it also allows companies to align business needs with technical security practices. As such, a different set of cloud stakeholders, including business teams and technical staff, can derive more value. The Fundamentals of Cloud Security Architecture Every cloud computing architecture has three core fundamental capabilities; confidentiality, integrity, and availability. This is known as the CIA triad. Understanding each capability will guide your efforts to build, design, and implement safer cloud environments. 1. Confidentiality This is the ability to keep information hidden and inaccessible to unauthorized entities, such as attackers, malware, and people in your organization, without the appropriate access level. Privacy and trust are also part of confidentiality. When your organization promises customers to handle their data with utmost secrecy, you’re assuring them of confidentiality. 2. Integrity Integrity means that the services, systems, and applications work and behave exactly how you expect. That is, their output is consistent, accurate, and trustworthy. If these systems and applications are compromised and produce unexpected or misleading results, your organization may suffer irreparable damage. 3. Availability As the name implies, availability assures your cloud resources are consistently accessible and operational when needed. So, suppose an authorized user (whether customers or employees) needs data and applications in the cloud, such as your products or services. In that case, they can access it without interruption or significant downtime. Cybercriminals sometimes use denial-of-service (DoS) attacks to prevent the availability of cloud resources. When this happens, your systems become unavailable to you or your customers, which isn’t ideal. So, how do you stop that from happening and ensure your cloud security architecture provides these core capabilities? Approaches to Cloud Security Architecture There are multiple security architecture approaches, including frameworks and methodologies, to support design and implementation steps. Cloud Security Frameworks and Methodologies A cloud security framework outlines a set of guidelines and controls your organizations can use when securing data, applications, and infrastructures within the cloud computing environment. Frameworks provide a structured approach to detecting risks and implementing appropriate security protocols to prevent them. Without a consistent cloud security framework, your organization exposes itself to more vulnerabilities. You may lack the comprehensive visibility to ensure your data and applications are adequately secure from unauthorized access, data exposure, malware, and other security threats. Plus, you may have limited incident response capabilities, inconsistent security practices, and increased operational risks. A cloud security framework also helps you stay compliant with regulatory requirements. Lastly, failing to have appropriate security frameworks can erode customer trust and confidence in your ability to protect their privacy. This is why you must implement a recognized framework to significantly reduce potential risks associated with cloud security and ensure the CIA of data and systems. There are numerous security frameworks. Some are for governance (e.g., COBIT and COSO), architecture (e.g., SABSA), and the NIST cybersecurity framework. While these generally apply broadly to technology, they may also apply to cloud environments. Other cloud-specific frameworks include the ISO/IEC 27017:2015, Cloud Control Matrix (CCM), Cloud Security Alliance, and the FedRAMP. 1. NIST Cybersecurity Framework (NIST CSF) The National Institute of Standards and Technology’s Cybersecurity Framework (NIST CSF) outlines a set of guidelines for securing security systems. It has five core capabilities: Identify, Protect, Detect, Respond, and Recover. Identify – What processes, assets, and systems need protection? Protect – Develop and implement the right safeguards to ensure critical infrastructure services delivery. Detect – Implement the appropriate mechanisms to enable the timely discovery of cybersecurity incidents. Respond – Develop techniques to contain the impact of potential cybersecurity incidents. Recover – Implement appropriate measures to restore business capabilities and services affected by cybersecurity events. While the NIST CSF is a general framework for the security of your organization’s systems, these five pillars can help you assess and manage cloud-related security risks. 2. ISO/IEC 27017:2015 ISO 27017 is a cloud security framework that defines guidelines on information security issues specific to the cloud. The framework’s security controls add to the ISO/IEC 27002 and ISO/IEC 27001 standards’ recommendations. The framework also offers specific security measures and implementation advice for cloud service providers and applications. 3. Sherwood Applied Business Security Architecture (SABSA) First developed by John Sherwood, SABSA is an Enterprise Security Architecture Framework that provides guidelines for developing business-driven, risk, and opportunity-focused security architectures to support business objectives. The SABSA framework aims to prioritize your business needs, meaning security services are designed and developed to be an integral part of your business and IT infrastructure. Here are some core principles of the Gartner-recommended SABSA framework for enterprises: It is business-driven. SABSA ensures security is integrated into your entire business strategy. This means there’s a strong emphasis on understanding your organization’s business objectives. So, any security measure is aligned with those objectives. SABSA is a risk-based approach. It considers security vulnerabilities, threats, and their potential impacts to prioritize security operations and investments. This helps your organization allocate resources effectively to address the most critical risks first. It promotes a layered security architecture. Earlier, we mentioned how a layered approach can help you align business and technical needs. So, it’s expected that this is a core principle of SABSA. This allows you to deploy multiple security controls across different layers, such as physical security, network security, application security, and data security. Each layer focuses on a specific security aspect and provides special controls and measures. Transparency: SABSA provides two-way traceability; that is, a clear two-way relationship exists between aligning security requirements and business goals. This provides a clear overview of where expenditure is made ad the value that is returned. Modular approach: SABSA offers agility for ease of implementation and management. This can make your business flexible when meeting changing market or economic conditions. 4. MITRE ATT&CK The MITRE ATT&CK framework is a repository of techniques and tactics that threat hunters, defenders, red teams, and security architects can use to classify, identify, and assess attacks. Instead of focusing on security controls and mechanisms to mitigate threats, this framework targets the techniques that hackers and other threat actors use in the cloud. So, using this framework can be excellent if you want to understand how potential attack vectors operate. It can help you become proactive and strengthen your cloud security posture through improved detection and incident response. 5. Cloud Security Alliance Cloud Controls Matrix (CSA CCM) The CSA CCM is a cybersecurity control framework specifically for cloud computing. It contains 197 control objectives structured in 17 domains that cover every critical aspect of cloud technology. Cloud customers and cloud service providers (CSPs) can use this tool to assess cloud implementation systematically. It also guides customers on the appropriate security controls for implementation by which actor in the cloud supply chain. 6. Cloud Security Alliance Security Trust Assurance and Risk (CSA STAR) The CSA STAR framework is for CSPs. It combines the principles of transparency, thorough auditing, and harmonization of standards. What CSA STAR does is to help you, as a cloud customer, assess a cloud service provider’s reliability and security posture. There are two ways this can happen: CSA STAR Certification: This is a rigorous third-party assessment of the CSP’s security controls, posture, and practices. The CSP undergoes a thorough audit based on the CSA’s Cloud Control Matrix (CCM), which is a set of cloud security controls aligned with industry standards. CSA STAR Self-Assessment: The CSA also has a Consensus Assessment Initiative Questionnaire (CAIQ). CSPs can use this to test and report on their security controls and practices. Since it’s a self-assessment procedure, it allows CSPs to be transparent, enabling customers like you to understand a CSP’s security capabilities before adopting their services. Challenges and Considerations in Cloud Security Architecture Before any cloud deployment, it’s important to understand the threats you may face, such as privilege-based attacks and malware, and be prepared for them. Since there are many common threats, we’ll quickly run through the most high-profile ones with the most devastating impacts. It’s important to remember some threats may also be specific to the type of cloud service model. 1. Insider risks This includes the employees in your organization who have access to data, applications, and systems, as well as CSP administrators. Whenever you subscribe to a CSP’s services, you entrust your workloads to the staff who maintain the CSP architecture. 2. DoS attacks Direct denial-of-service (DDoS) attacks are critical issues in cloud environments. Although security perimeters can deflect temporary DDoS attacks to filter out repeated requests, permanent DoS attacks are more damaging to your firmware and render the server unbootable. If this happens, you may need to physically reload the firmware and rebuild the system from the ground up, resulting in business downtime for weeks or longer. 3. Data availability You also want to consider how much of your data is accessible to the government. Security professionals are focusing on laws and examples that demonstrate when and how government authorities can access data in the cloud, whether through legal processes or court rulings. 4. Cloud-connected Edge Systems The concept of “cloud edge” encompasses both edge systems directly connected to the cloud and server architecture that is not directly controlled by the cloud service provider (CSP). To extend their services to smaller or remote locations, global CSPs often rely on partners as they cannot have facilities worldwide. Consequently, CSPs may face limitations in fully regulating hardware monitoring, ensuring physical box integrity, and implementing attack defenses like blocking USB port access. 5. Hardware Limitations Having the most comprehensive cloud security architecture still won’t help you create stronger passwords. While your cloud security architects focus on the firmware, hardware, and software, it’s down to the everyday users to follow best practices for staying safe. Best Practices in Cloud Security Architecture The best practices in Cloud Security Architecture are highlighted below: 1. Understand the shared responsibility model Cloud security is implemented with a shared responsibility model. Although, as the cloud customer, you may have most of the obligation, the cloud provider also shares some of the responsibility. Most vendors, such as Amazon Web Services (AWS) and Microsoft Azure, have documentation that clearly outlines your specific responsibilities depending on the deployment type. It’s important to clearly understand your shared responsibility model and review cloud vendor policies. This will prevent miscommunications and security incidents due to oversight. 2. Secure network design and segmentation This is one of the principles of cloud security architecture – and by extension, a best practice. Secure network design and segmentation involve dividing the network into isolated segments to avoid lateral movements during a breach. Implementing network segmentation allows your organization to contain potential risks and attacks within a specific segment. This can minimize the effects of an incident on your entire network and protect critical assets within the cloud infrastructure. 3. Deploy an Identity and access management (IAM) solution Unauthorized access is one of the biggest problems facing cloud security. Although hackers now use sophisticated tools to gain access to sensitive data, implementing a robust identity and access management (IAM) system can help prevent many threats. Consider access policies like role-based access control (RBAC) permissions, multi-factor authentication (MFA), and continuous threat monitoring. 4. Consider a CASB or Cloud Security Solution (e.g., Cloud-Native Application Protection (CNAPP) and Cloud Workload Protection Platforms (CWPP) Cloud Access Security Brokers (CASBs) provide specialized tools to enforce cloud security policies. Implementing a CASB solution is particularly recommended if you have a multi-cloud environment involving different vendors. Since a CASB acts as an intermediary between your organization’s on-premise infrastructure and CSPs, it allows your business to extend security policies and controls to the cloud. CASBs can enhance your data protection through features like data loss prevention, tokenization, and encryption. Plus, they help you discover and manage shadow IT through visibility into unauthorized cloud services and applications. Besides CASB solutions, you should also consider other solutions for securing your cloud environments. This includes cloud-native application protection (CNAPP) and cloud workload protection platforms (CWPP). For example, a CNAPP like Prevasio can improve your cloud security architecture with tailored solutions and automated security management. 5. Conduct Audits, Penetration Testing, and Vulnerability Testing Whether or not you outsource security, performing regular penetration tests and vulnerability is necessary. This helps you assess the effectiveness of your cloud security measures and identify potential weaknesses before hackers exploit them. You should also perform security audits that evaluate cloud security vendors’ capabilities and ensure appropriate access controls are in place. This can be achieved by using the guidelines of some frameworks we mentioned earlier, such as the CSA STAR. 6. Train Your Staff Rather than hiring new hires, training your current staff may be beneficial. Your employees have been at your company for a while and are already familiar with the organization’s culture, values, and processes. This could give them an advantage over new hires. As most existing IT skills can be reused, upskilling employees is more efficient and may help you meet the immediate need for a cloud IT workforce. Train your staff on recognizing simple and complex cybersecurity threats, such as creating strong passwords, identifying social engineering attacks, and advanced topics like risk management. 7. Mitigate Cloud Misconfigurations A misconfigured bucket could give access to anyone on the internet. To minimize cloud misconfigurations and reduce security risks, managing permissions in cloud services carefully is crucial. Misconfigurations, such as granting excessive access permissions to external users, can enable unauthorized access and potential data breaches. Attackers who compromise credentials can escalate their privileges, leading to further data theft and broader attacks within the cloud infrastructure. Therefore, it is recommended that IT, storage, or security teams, with assistance from development teams, personally configure each cloud bucket, ensuring proper access controls and avoiding default permissions. 8. Ensure compliance with regulatory requirements Most organizations today need to comply with strict regulatory requirements. This is especially important if you collect personally identifiable information (PII) or if your business is located in certain regions. Before you adopt a new cloud computing service, assess their compliance requirements and ensure they can fulfill data security needs. Failure to meet compliance requirements can lead to huge penalties. Other best practices for your cloud security include continuous monitoring and threat intelligence, data encryption at rest and in transit, and implementing intrusion detection and intrusion prevention systems. Conclusion When establishing a robust cloud security architecture, aligning business objectives and technical needs is important. Your organization must understand the shared responsibility model, risks, the appropriate implementation framework, and best practices. However, designing and developing cloud computing architectures can be complicated. Prevasio can secure your multi-cloud environment in minutes. Want to improve your cloud security configuration management? Prevasio’s agentless CNAPP can provide complete visibility over cloud resources, ensure compliance, and provide advanced risk monitoring and threat intelligence. Speak to us now. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | The Application Migration Checklist

    All organizations eventually inherit outdated technology infrastructure. As new technology becomes available, old apps and services... Firewall Change Management The Application Migration Checklist Asher Benbenisty 2 min read Asher Benbenisty Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 10/25/23 Published All organizations eventually inherit outdated technology infrastructure. As new technology becomes available, old apps and services become increasingly expensive to maintain. That expense can come in a variety of forms: Decreased productivity compared to competitors using more modern IT solutions. Greater difficulty scaling IT asset deployments and managing the device life cycle . Security and downtime risks coming from new vulnerabilities and emerging threats. Cloud computing is one of the most significant developments of the past decade. Organizations are increasingly moving their legacy IT assets to new environments hosted on cloud services like Amazon Web Services or Microsoft Azure. Cloud migration projects enable organizations to dramatically improve productivity, scalability, and security by transforming on-premises applications to cloud-hosted solutions. However, cloud migration projects are among the most complex undertakings an organization can attempt. Some reports state that nine out of ten migration projects experience failure or disruption at some point, and only one out of four meet their proposed deadlines. The better prepared you are for your application migration project , the more likely it is to succeed. Keep the following migration checklist handy while pursuing this kind of initiative at your company. Step 1: Assessing Your Applications The more you know about your legacy applications and their characteristics, the more comprehensive you can be with pre-migration planning. Start by identifying the legacy applications that you want to move to the cloud. Pay close attention to the dependencies that your legacy applications have. You will need to ensure the availability of those resources in an IT environment that is very different from the typical on-premises data center. You may need to configure cloud-hosted resources to meet specific needs that are unique to your organization and its network architecture. Evaluate the criticality of each legacy application you plan on migrating to the cloud. You will have to prioritize certain applications over others, minimizing disruption while ensuring the cloud-hosted infrastructure can support the workload you are moving to. There is no one-size-fits-all solution to application migration. The inventory assessment may bring new information to light and force you to change your initial approach. It’s best that you make these accommodations now rather than halfway through the application migration project. Step 2: Choosing the Right Migration Strategy Once you know what applications you want to move to the cloud and what additional dependencies must be addressed for them to work properly, you’re ready to select a migration strategy. These are generalized models that indicate how you’ll transition on-premises applications to cloud-hosted ones in the context of your specific IT environment. Some of the options you should gain familiarity with include: Lift and Shift (Rehosting). This option enables you to automate the migration process using tools like CloudEndure Migration, AWS VM Import/Export, and others. The lift and shift model is well-suited to organizations that need to migrate compatible large-scale enterprise applications without too many additional dependencies, or organizations that are new to the cloud. Replatforming. This is a modified version of the lift and shift model. Essentially, it introduces an additional step where you change the configuration of legacy apps to make them better-suited to the cloud environment. By adding a modernization phase to the process, you can leverage more of the cloud’s unique benefits and migrate more complex apps. Refactoring/Re-architecting. This strategy involves rewriting applications from scratch to make them cloud-native. This allows you to reap the full benefits of cloud technology. Your new applications will be scalable, efficient, and agile to the maximum degree possible. However, it’s a time-consuming, resource-intensive project that introduces significant business risk into the equation. Repurchasing. This is where the organization implements a fully mature cloud architecture as a managed service. It typically relies on a vendor offering cloud migration through the software-as-a-service (SaaS) model. You will need to pay licensing fees, but the technical details of the migration process will largely be the vendor’s responsibility. This is an easy way to add cloud functionality to existing business processes, but it also comes with the risk of vendor lock-in. Step 3: Building Your Migration Team The success of your project relies on creating and leading a migration team that can respond to the needs of the project at every step. There will be obstacles and unexpected issues along the way – a high-quality team with great leadership is crucial for handling those problems when they arise. Before going into the specifics of assembling a great migration team, you’ll need to identify the key stakeholders who have an interest in seeing the project through. This is extremely important because those stakeholders will want to see their interests represented at the team level. If you neglect to represent a major stakeholder at the team level, you run the risk of having major, expensive project milestones rejected later on. Not all stakeholders will have the same level of involvement, and few will share the same values and goals. Managing them effectively means prioritizing the values and goals they represent, and choosing team members accordingly. Your migration team will consist of systems administrators, technical experts, and security practitioners, and include input from many other departments. You’ll need to formalize a system of communicating inside the core team and messaging stakeholders outside of it. You may also wish to involve end users as a distinct part of your migration team and dedicate time to addressing their concerns throughout the process. Keep team members’ stakeholder alignments and interests in mind when assigning responsibilities. For example, if a particular configuration step requires approval from the finance department, you’ll want to make sure that someone representing that department is involved from the beginning. Step 4: Creating a Migration Plan It’s crucial that every migration project follows a comprehensive plan informed by the needs of the organization itself. Organizations pursue cloud migration for many different reasons – your plan should address the problems you expect cloud-hosted technology to solve. This might mean focusing on reducing costs, enabling entry into a new market, or increasing business agility – or all three. You may have additional reasons for pursuing an application migration plan. This plan should also include data mapping . Choosing the right application performance metrics now will help make the decision-making process much easier down the line. Some of the data points that cloud migration specialists recommend capturing include: Duration highlights the value of employee labor-hours as they perform tasks throughout the process. Operational duration metrics can tell you how much time project managers spend planning the migration process, or whether one phase is taking much longer than another, and why. Disruption metrics can help identify user experience issues that become obstacles to onboarding and full adoption. Collecting data about the availability of critical services and the number of service tickets generated throughout the process can help you gauge the overall success of the initiative from the user’s perspective. Cost includes more than data transfer rates. Application migration initiatives also require creating dependency mappings, changing applications to make them cloud-native, and significant administrative costs. Up to 50% of your migration’s costs pay for labor , and you’ll want to keep close tabs on those costs as the process goes on. Infrastructure metrics like CPU usage, memory usage, network latency, and load balancing are best captured both before and after the project takes place. This will let you understand and communicate the value of the project in its entirety using straightforward comparisons. Application performance metrics like availability figures, error rates, time-outs and throughput will help you calculate the value of the migration process as a whole. This is another post-cloud migration metric that can provide useful before-and-after data. You will also want to establish a series of cloud service-level agreements (SLAs) that ensure a predictable minimum level of service is maintained. This is an important guarantee of the reliability and availability of the cloud-hosted resources you expect to use on a daily basis. Step 5: Mapping Dependencies Mapping dependencies completely and accurately is critical to the success of any migration project. If you don’t have all the elements in your software ecosystem identified correctly, you won’t be able to guarantee that your applications will work in the new environment. Application dependency mapping will help you pinpoint which resources your apps need and allow you to make those resources available. You’ll need to discover and assess every workload your organization undertakes and map out the resources and services it relies on. This process can be automated, which will help large-scale enterprises create accurate maps of complex interdependent processes. In most cases, the mapping process will reveal clusters of applications and services that need to be migrated together. You will have to identify the appropriate windows of opportunity for performing these migrations without disrupting the workloads they process. This often means managing data transfer and database migration tasks and carrying them out in a carefully orchestrated sequence. You may also discover connectivity and VPN requirements that need to be addressed early on. For example, you may need to establish protocols for private access and delegate responsibility for managing connections to someone on your team. Project stakeholders may have additional connectivity needs, like VPN functionality for securing remote connections. These should be reflected in the application dependency mapping process. Multi-cloud compatibility is another issue that will demand your attention at this stage. If your organization plans on using multiple cloud providers and configuring them to run workloads specific to their platform, you will need to make sure that the results of these processes are communicated and stored in compatible formats. Step 6: Selecting a Cloud Provider Once you fully understand the scope and requirements of your application migration project, you can begin comparing cloud providers. Amazon, Microsoft, and Google make up the majority of all public cloud deployments, and the vast majority of organizations start their search with one of these three. Amazon AW S has the largest market share, thanks to starting its cloud infrastructure business several years before its major competitors did. Amazon’s head start makes finding specialist talent easier, since more potential candidates will have familiarity with AWS than with Azure or Google Cloud. Many different vendors offer services through AWS, making it a good choice for cloud deployments that rely on multiple services and third-party subscriptions. Microsoft Azure has a longer history serving enterprise customers, even though its cloud computing division is smaller and younger than Amazon’s. Azure offers a relatively easy transition path that helps enterprise organizations migrate to the cloud without adding a large number of additional vendors to the process. This can help streamline complex cloud deployments, but also increases your reliance on Microsoft as your primary vendor. Google Cloud is the third runner-up in terms of market share. It continues to invest in cloud technologies and is responsible for a few major innovations in the space – like the Kubernetes container orchestration system. Google integrates well with third-party applications and provides a robust set of APIs for high-impact processes like translation and speech recognition. Your organization’s needs will dictate which of the major cloud providers offers the best value. Each provider has a different pricing model, which will impact how your organization arrives at a cost-effective solution. Cloud pricing varies based on customer specifications, usage, and SLAs, which means no single provider is necessarily “the cheapest” or “the most expensive” – it depends on the context. Additional cost considerations you’ll want to take into account include scalability and uptime guarantees. As your organization grows, you will need to expand its cloud infrastructure to accommodate more resource-intensive tasks. This will impact the cost of your cloud subscription in the future. Similarly, your vendor’s uptime guarantee can be a strong indicator of how invested it is in your success. Given all vendors work on the shared responsibility model, it may be prudent to consider an enterprise data backup solution for peace of mind. Step 7: Application Refactoring If you choose to invest time and resources into refactoring applications for the cloud, you’ll need to consider how this impacts the overall project. Modifying existing software to take advantage of cloud-based technologies can dramatically improve the efficiency of your tech stack, but it will involve significant risk and up-front costs. Some of the advantages of refactoring include: Reduced long-term costs. Developers refactor apps with a specific context in mind. The refactored app can be configured to accommodate the resource requirements of the new environment in a very specific manner. This boosts the overall return of investing in application refactoring in the long term and makes the deployment more scalable overall. Greater adaptability when requirements change . If your organization frequently adapts to changing business requirements, refactored applications may provide a flexible platform for accommodating unexpected changes. This makes refactoring attractive for businesses in highly regulated industries, or in scenarios with heightened uncertainty. Improved application resilience . Your cloud-native applications will be decoupled from their original infrastructure. This means that they can take full advantage of the benefits that cloud-hosted technology offers. Features like low-cost redundancy, high-availability, and security automation are much easier to implement with cloud-native apps. Some of the drawbacks you should be aware of include: Vendor lock-in risks . As your apps become cloud-native, they will naturally draw on cloud features that enhance their capabilities. They will end up tightly coupled to the cloud platform you use. You may reach a point where withdrawing those apps and migrating them to a different provider becomes infeasible, or impossible. Time and talent requirements . This process takes a great deal of time and specialist expertise. If your organization doesn’t have ample amounts of both, the process may end up taking too long and costing too much to be feasible. Errors and vulnerabilities . Refactoring involves making major changes to the way applications work. If errors work their way in at this stage, it can deeply impact the usability and security of the workload itself. Organizations can use cloud-based templates to address some of these risks, but it will take comprehensive visibility into how applications interact with cloud security policies to close every gap. Step 8: Data Migration There are many factors to take into consideration when moving data from legacy applications to cloud-native apps. Some of the things you’ll need to plan for include: Selecting the appropriate data transfer method . This depends on how much time you have available for completing the migration, and how well you plan for potential disruptions during the process. If you are moving significant amounts of data through the public internet, sidelining your regular internet connection may be unwise. Offline transfer doesn’t come with this risk, but it will include additional costs. Ensuring data center compatibility. Whether transferring data online or offline, compatibility issues can lead to complex problems and expensive downtime if not properly addressed. Your migration strategy should include a data migration testing strategy that ensures all of your data is properly formatted and ready to use the moment it is introduced to the new environment. Utilizing migration tools for smooth data transfer . The three major cloud providers all offer cloud migration tools with multiple tiers and services. You may need to use these tools to guarantee a smooth transfer experience, or rely on a third-party partner for this step in the process. Step 9: Configuring the Cloud Environment By the time your data arrives in its new environment, you will need to have virtual machines and resources set up to seamlessly take over your application workloads and processes. At the same time, you’ll need a comprehensive set of security policies enforced by firewall rules that address the risks unique to cloud-hosted infrastructure. As with many other steps in this checklist, you’ll want to carefully assess, plan, and test your virtual machine deployments before deploying them in a live production environment. Gather information about your source and target environment and document the workloads you wish to migrate. Set up a test environment you can use to make sure your new apps function as expected before clearing them for live production. Similarly, you may need to configure and change firewall rules frequently during the migration process. Make sure that your new deployments are secured with reliable, well-documented security policies. If you skip the documentation phase of building your firewall policy, you run the risk of introducing security vulnerabilities into the cloud environment, and it will be very difficult for you to identify and address them later on. You will also need to configure and deploy network interfaces that dictate where and when your cloud environment will interact with other networks, both inside and outside your organization. This is your chance to implement secure network segmentation that protects mission-critical assets from advanced and persistent cyberattacks. This is also the best time to implement disaster recovery mechanisms that you can rely on to provide business continuity even if mission-critical assets and apps experience unexpected downtime. Step 10: Automating Workflows Once your data and apps are fully deployed on secure cloud-hosted infrastructure, you can begin taking advantage of the suite of automation features your cloud provider offers. Depending on your choice of migration strategy, you may be able to automate repetitive tasks, streamline post-migration processes, or enhance the productivity of entire departments using sophisticated automation tools. In most cases, automating routine tasks will be your first priority. These automations are among the simplest to configure because they largely involve high-volume, low-impact tasks. Ideally, these tasks are also isolated from mission-critical decision-making processes. If you established a robust set of key performance indicators earlier on in the migration project, you can also automate post-migration processes that involve capturing and reporting these data points. Your apps will need to continue ingesting and processing data, making data validation another prime candidate for workflow automation. Cloud-native apps can ingest data from a wide range of sources, but they often need some form of validation and normalization to produce predictable results. Ongoing testing and refinement will help you make the most of your migration project moving forward. How AlgoSec Enables Secure Application Migration Visibility and Di scovery : AlgoSec provide s comprehensive visibility into your existing on-premises network environment. It automatically discovers all network devices, applications, and their dependencies. This visibility is crucial when planning a secure migration, ensuring no critical elements get overlooked in the process. Application Dependency Mapping : AlgoSec’s application dependency mapping capabilities allow you to understand how different applications and services interact within your network. This knowledge is vital during migration to avoid disrupting critical dependencies. Risk Assessment : AlgoSec assesses the security and compliance risks associated with your migration plan. It identifies potential vulnerabilities, misconfigurations, and compliance violations that could impact the security of the migrated applications. Security Policy Analysis : Before migrating, AlgoSec helps you analyze your existing security policies and rules. It ensures that security policies are consistent and effective in the new cloud or data center environment. Misconfigurations and unnecessary rules can be eliminated, reducing the attack surface. Automated Rule Optimiz ation : AlgoSec automates the o ptimization of security rules. It identifies redundant rules, suggests rule consolidations, and ensures that only necessary traffic is allowed, helping you maintain a secure environment during migration. Change Management : During the migration process, changes to security policies and firewall rules are often necessary. AlgoSec facilitates change management by providing a streamlined process for requesting, reviewing, and implementing rule changes. This ensures that security remains intact throughout the migration. Compliance and Governance : AlgoSec helps maintain compliance with industry regulations and security best practices. It generates compliance reports, ensures rule consistency, and enforces security policies, even in the new cloud or data center environment. Continuous Monitoring and Auditing : Post-migration, AlgoSec continues to monitor and audit your security policies and network traffic. It alerts you to any anomalies or security breaches, ensuring the ongoing security of your migrated applications. Integration with Cloud Platforms : AlgoSec integrates seamlessly with various cloud platforms such as AWS , Microsoft Azure , and Google Cloud . This ensures that security policies are consistently applied in both on-premises and cloud environments, enabling a secure hybrid or multi-cloud setup. Operational Efficiency : AlgoSec’s automation capabilities reduce manual tasks, improving operational efficiency. This is essential during the migration process, where time is often of the essence. Real-time Visibility and Control : AlgoSec provides real-time visibility and control over your security policies, allowing you to adapt quickly to changing migration requirements and security threats. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Cloud Application Security: Threats, Benefits, & Solutions

    As your organization adopts a hybrid IT infrastructure, there are more ways for hackers to steal your sensitive data. This is why cloud... Cloud Security Cloud Application Security: Threats, Benefits, & Solutions Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/29/23 Published As your organization adopts a hybrid IT infrastructure, there are more ways for hackers to steal your sensitive data. This is why cloud application security is a critical part of data protection. It allows you to secure your cloud-based applications from cyber threats while ensuring your data is safe. This post will walk you through cloud application security, including its importance. We will also discuss the main cloud application security threats and how to mitigate them. What is Cloud Application Security Cloud application security refers to the security measures taken to protect cloud-based assets throughout their development lifecycle. These security measures are a framework of policies, tools, and controls that protect your cloud against cyber threats. Here is a list of security measures that cloud application security may involve: Compliance with industry standards such as CIS benchmarks to prevent data breaches. Identity management and access controls to prevent unauthorized access to your cloud-based apps. Data encryption and tokenization to protect sensitive data. Vulnerability management through vulnerability scanning and penetration testing. Network perimeter security, such as firewalls, to prevent unwanted access. The following are some of the assets that cloud security affects: Third-party cloud providers like Amazon AWS, Microsoft Azure, and Google GCP. Collaborative applications like Slack and Microsoft Teams. Data Servers. Computer Networks. Why is Cloud Application Security Important Cloud application security is becoming more relevant as businesses migrated their data to the cloud in recent years. This is especially true for companies with a multi-cloud environment. These types of environments create a larger attack surface for hackers to exploit. According to IBM , the cost of a data breach in 2022 was $4.35 million. And this represents an increase of 2.6% from the previous year. The report also revealed that it took an average of 287 days to find and stop a data breach in a cloud environment. This time is enough for hackers to steal sensitive data and really damage your assets. Here are more things that can go wrong if organizations don’t pay attention to cloud security: Brand image damage: A security breach may cause a brand’s reputation to suffer and a decline in client confidence. During a breach, your company’s servers may be down for days or weeks. This means customers who paid for your services will not get access in that time. They may end up destroying your brand’s image through word of mouth. Lost consumer trust: Consumer confidence is tough to restore after being lost due to a security breach. Customers could migrate to rivals they believe to be more secure. Organizational disruption: A security breach may cause system failures preventing employees from working. This, in turn, could affect their productivity. You may also have to fire employees tasked with ensuring cloud security. Data loss: You may lose sensitive data, such as client information, resulting in legal penalties. Trade secrets theft may also affect the survival of your organization. Your competitors may steal your only leverage in the industry. Compliance violations: You may be fined for failing to comply with industry regulations such as GDPR. You may also face legal consequences for failing to protect consumer data. What are the Major Cloud Application Security Threats The following is a list of the major cloud application security threats: Misconfigurations: Misconfigurations are errors made when setting up cloud-based applications. They can occur due to human errors, lack of expertise, or mismanagement of cloud resources. Examples include weak passwords, unsecured storage baskets, and unsecured ports. Hackers may use these misconfigurations to access critical data in your public cloud. Insecure data sharing: This is the unauthorized or unintended sharing of sensitive data between users. Insecure data sharing can happen due to a misconfiguration or inappropriate access controls. It can lead to data loss, breaches, and non-compliance with regulatory standards. Limited visibility into network operations: This is the inability to monitor and control your cloud infrastructure and its apps. Limited network visibility prevents you from quickly identifying and responding to cyber threats. Many vulnerabilities may go undetected for a long time. Cybercriminals may exploit these weak points in your network security and gain access to sensitive data. Account hijacking: This is a situation where a hacker gains unauthorized access to a legitimate user’s cloud account. The attackers may use various social engineering tactics to steal login credentials. Examples include phishing attacks, password spraying, and brute-force attacks. Once they access the user’s cloud account, they can steal data or damage assets from within. Employee negligence and inadequately trained personnel: This threat occurs when employees are not adequately trained to recognize, report and prevent cyber risks. It can also happen when employees unintentionally or intentionally engage in risky behavior. For example, they could share login credentials with unauthorized users or set weak passwords. Weak passwords enable attackers to gain entry into your public cloud. Rogue employees can also intentionally give away your sensitive data. Compliance risks: Your organization faces cloud computing risks when non-compliant with industry regulations such as GDPR, PCI-DSS, and HIPAA. Some of these cloud computing risks include data breaches and exposure of sensitive information. This, in turn, may result in fines, legal repercussions, and reputational harm. Data loss: Data loss is a severe security risk for cloud applications. It may happen for several causes, including hardware malfunction, natural calamities, or cyber-attacks. Some of the consequences of data loss may be the loss of customer trust and legal penalties. Outdated security software: SaaS vendors always release updates to address new vulnerabilities and threats. Failing to update your security software on a regular basis may leave your system vulnerable to cyber-attacks. Hackers may exploit the flaws in your outdated SaaS apps to gain access to your cloud. Insecure APIs: APIs are a crucial part of cloud services but can pose a severe security risk if improperly secured. Insecure APIs and other endpoint infrastructure may cause many severe system breaches. They can lead to a complete system takeover by hackers and elevated privileged access. How to Mitigate Cloud Application Security Risks The following is a list of measures to mitigate cloud app security risks: Conduct a thorough risk analysis: This entails identifying possible security risks and assessing their potential effects. You then prioritize correcting the risks depending on their level of severity. By conducting risk analysis on a regular basis, you can keep your cloud environment secure. You’ll quickly understand your security posture and select the right security policies. Implement a firm access control policy: Access control policies ensure that only authorized users gain access to your data. They also outline the level of access to sensitive data based on your employees’ roles. A robust access control policy comprises features such as: Multi-factor authentication Role-based access control Least Privilege Access Strong password policies. Use encryption: Encryption is a crucial security measure that protects sensitive data in transit and at rest. This way, if an attacker intercepts data in transit, it will only be useful if they have a decryption key. Some of the cloud encryption solutions you can implement include: Advanced Encryption Standard (AES) Rivest -Shamir-Addleman (RSA) Transport Layer Security (TSL) Set up data backup and disaster recovery policies: A data backup policy ensures data is completely recovered in case of breaches. You can always recover the lost data from your data backup files. Data backup systems also help reduce the impact of cyberattacks as you will restore normal operations quickly. Disaster recovery policies focus on establishing protocols and procedures to restore critical systems during a major disaster. This way, your data security will stay intact even when disaster strikes. Keep a constant watch over cloud environments: Security issues in cloud settings can only be spotted through continuous monitoring. Cloud security posture management tools like Prevasio can help you monitor your cloud for such issues. With its layer analysis feature, you’ll know the exact area in your cloud and how to fix it. Test and audit cloud security controls regularly: Security controls help you detect and mitigate potential security threats in your cloud. Examples of security controls include firewalls, intrusion detection systems, and database encryption. Auditing these security controls helps to identify gaps they may have. And then you take corrective actions to restore their effectiveness. Regularly evaluating your security controls will reduce the risk of security incidents in your cloud. Implement a security awareness training program: Security awareness training helps educate employees on cloud best practices. When employees learn commonly overlooked security protocols, they reduce the risks of data breaches due to human error. Organize regular assessment tests with your employees to determine their weak points. This way, you’ll reduce chances of hackers gaining access to your cloud through tactics such as phishing and ransomware attacks. Use the security tools and services that cloud service providers offer: Cloud service providers like AWS, Azure, and Google Cloud Platform (GCP) offer security tools and services such as: Web application firewalls (WAF), Runtime application self-protection (RASP), Intrusion detection and prevention systems Identity and access management (IAM) controls You can strengthen the security of your cloud environments by utilizing these tools. However, you should not rely solely on these features to ensure a secure cloud. You also need to implement your own cloud security best practices. Implement an incident response strategy: A security incident response strategy describes the measures to take during a cyber attack. It provides the procedures and protocols to bring the system back to normal in case of a breach. Designing incident response plans helps to reduce downtime. It also minimizes the impact of the damages due to cyber attacks. Apply the Paved Road Security Approach in DevSecOps Processes: DevSecOps environments require security to be integrated into development workflows and tools. This way, cloud security becomes integral to an app development process. The paved road security approach provides a secure baseline that DevSecOps can use for continuous monitoring and automated remediation. Automate your cloud application security practices Using on-premise security practices such as manual compliance checks to mitigate cloud application security threats can be tiring. Your security team may also need help to keep up with the updates as your cloud needs grow. Cloud vendors that can automate all the necessary processes to maintain a secure cloud. They have cloud security tools to help you achieve and maintain compliance with industry standards. You can improve your visibility into your cloud infrastructures by utilizing these solutions. They also spot real-time security challenges and offer remediations. For example, Prevasio’s cloud security solutions monitor cloud environments continually from the cloud. They can spot possible security threats and vulnerabilities using AI and machine learning. What Are Cloud Application Security Solutions? Cloud application security solutions are designed to protect apps and other assets in the cloud. Unlike point devices, cloud application security solutions are deployed from the cloud. This ensures you get a comprehensive cybersecurity approach for your IT infrastructure. These solutions are designed to protect the entire system instead of a single point of vulnerability. This makes managing your cybersecurity strategy easier. Here are some examples of cloud security application solutions: 1. Cloud Security Posture Management (CSPM) : CSPM tools enable monitoring and analysis of cloud settings for security risks and vulnerabilities. They locate incorrect setups, resources that aren’t compliant, and other security concerns that might endanger cloud infrastructures. 2. The Cloud Workload Protection Platform (CWPP) : This cloud application security solution provides real-time protection for workloads in cloud environments . It does this by detecting and mitigating real-time threats regardless of where they are deployed. CWPP solutions offer various security features, such as: Network segmentation File integrity monitoring Vulnerability scanning. Using CWPP products will help you optimize your cloud application security strategy. 3. Cloud Access Security Broker (CASB) : CASB products give users visibility into and control over the data and apps they access in the cloud. These solutions help businesses enforce security guidelines and monitor user behavior in cloud settings. The danger of data loss, leakage, and unauthorized access is lowered in the process. CASB products also help with malware detection. 4. Runtime Application Self Protection (RASP): This solution addresses security issues that may arise while a program is working. It identifies potential threats and vulnerabilities during runtime and thwarts them immediately. Some of the RASP solutions include: Input validation Runtime hardening Dynamic Application Security testing 5. Web Application and API protection (WAAP) : These products are designed to protect your organization’s Web applications and APIs. They monitor outgoing and incoming web apps and API traffic to detect malicious activity. WAAP products can block any unauthorized access attempts. They can also protect against cyber threats like SQL injection and Cross-site scripting. 6. Data Loss Prevention (DLP): DLP products are intended to stop the loss or leaking of private information in cloud settings. These technologies keep track of sensitive data in use and at rest. They can also enforce rules to stop unauthorized people from losing or accessing it. 7. Security Information and Event Management (SIEM) systems : SIEM systems track and analyze real-time security incidents and events in cloud settings. The effect of security breaches is decreased thanks to these solutions. They help firms in detecting and responding to security issues rapidly. Cloud Native Application Protection Platform (CNAPP) The CNAPP, which Prevasio created, raises the bar for cloud security. It combines CSPM, CIEM, IAM, CWPP, and more in one tool. A CNAPP delivers a complete security solution with sophisticated threat detection and mitigation capabilities for packaged workloads, microservices, and cloud-native applications. The CNAPP can find and eliminate security issues in your cloud systems before hackers can exploit them. With its layer analysis feature, you can quickly fix any potential vulnerabilities in your cloud . It pinpoints the exact layer of code where there are errors, saving you time and effort. CNAPP also offers a visual dynamic analysis of your cloud environment . This lets you grasp the state of your cloud security at a glance. In the process, saving you time as you know exactly where to go. CNAPP is also a scalable cloud security solution. The cloud-native design of Prevasio’s CNAPP enables it to expand dynamically and offer real-time protection against new threats. Let Prevasio Solve Your Cloud Application Security Needs Cloud security is paramount to protecting sensitive data and upholding a company’s reputation in the modern digital age. To be agile to the constantly changing security issues in cloud settings, Prevasio’s Cloud Native Application Protection Platform (CNAPP) offers an all-inclusive solution. From layer analysis to visual dynamic analysis, CNAPP gives you the tools you need to keep your cloud secure. You can rely on Prevasio to properly manage your cloud application security needs. Try Prevasio today! Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Improve visibility and identify risk across your Google Cloud environments with AlgoSec Cloud

    With expertise in data management, search algorithms, and AI, Google has created a cloud platform that excels in both performance and... Hybrid Cloud Security Management Improve visibility and identify risk across your Google Cloud environments with AlgoSec Cloud Joseph Hallman 2 min read Joseph Hallman Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 9/12/23 Published With expertise in data management, search algorithms, and AI, Google has created a cloud platform that excels in both performance and efficiency. The advanced machine learning, global infrastructure, and comprehensive suite of services available in Google Cloud demonstrates Google’s commitment to innovation. Many companies are leveraging these capabilities to explore new possibilities and achieve remarkable outcomes in the cloud. When large companies decide to locate or move critical business applications to the cloud, they often worry about security. Making decisions to move certain applications to the cloud should not create new security risks. Companies are concerned about things like hackers getting access to their data, unauthorized people viewing or tampering with sensitive information, and meeting compliance regulations. To address these concerns, it’s important for companies to implement strong security measures in the cloud, such as strict access controls, encrypting data, constantly monitoring for threats, and following industry security standards. Unfortunately, even with the best tools and safeguards in place it is hard to protect against everything. Human error plays a major part in this and can introduce threats with a few small mistakes in configuration files or security rules that can create unnecessary security risks. The CloudFlow solution from AlgoSec is a network security management solution designed for cloud environments. It provides clear visibility, risk analysis, and helps identify unused rules to help with policy cleanup across multi-cloud deployments. With CloudFlow, organizations can manage security policies, better understand risk, and enhance their overall security in the cloud. It offers centralized visibility, helps with policy management, and provides detailed risk assessment. With Algosec Cloud, and support for Google Cloud, many companies are gaining the following new capabilities: Improved visibility Identifying and reduce risk Generating detailed risk reports Optimizing existing policies Integrating with other cloud providers and on-premise security devices Improve overall visibility into your cloud environments Gain clear visibility into your Google Cloud, Inventory, and network risks. In addition, you can see all the rules impacting your Google Cloud VPCs in one place. View network and inherited policies across all your Google Cloud Projects in one place. Using the built-in search tool and filters it is easy to search and locate policies based on the project, region, and VPC network. View all the rules protecting your Google Cloud VPCs in one place. View VPC firewall rules and the inherited rules from hierarchical firewall policies Gain visibility for your security rules and policies across all of your Google Cloud projects in one place. Identify and Reduce Risk in your Cloud Environments CloudFlow includes the ability to identify risks in your Google Cloud environment and their severity. Look across policies for risks and then drill down to look at specific rules and the affected assets. For any rule, you can conveniently view the risk description, the risk remediation suggestion and all its affected assets. Quickly identify policies that include risk Look at risky rules and suggested remediation Understand the assets that are affected Identify risky rules so you can confidently remove them and avoid data breaches. Tip: Hover over the: Description icon : to view the risk description. Remediation icon: to view the remediation suggestion. Quickly create and share detailed risk reports From the left menu select Risk and then use the built-in filters to narrow down your selection and view specific risk based on cloud type, account, region, tags, and severity. Once the selections are made a detailed report can be automatically generated for you by clicking on the pdf report icon in the top right of the screen. Generate detailed risk reports to share in a few clicks. Optimize Existing Policies Unused rules represent a common security risk and create policy bloat that can complicate both cloud performance and connectivity. View unused rules on the Overview page, for each project you can see the number of Google Cloud rules not being used based on a defined analysis period. This information can assist in cleaning the policies and reducing the attack surface. Select analysis period Identify unused rule to help optimize your cloud security policies Quickly locate rules that are not in use to help reduce your attack surface. Integrate with other cloud providers and on-premise security devices Manage Google Cloud projects, other cloud solutions, and on-premise firewall devices by using AlgoSec Cloud along with the AlgoSec Security Management Suite (ASMS). Integrate with the full suite of solutions from AlgoSec for a powerful and comprehensive way to manage applications connectivity across your entire hybrid environment. CloudFlow plus ASMS provides clear visibility, risk identification, and other capabilities across large complex hybrid networks. Resources- Quick overview video about CloudFlow and Google Cloud support For more details about AlgoSec Security Management Suite or to schedule a demo please visit- www.algosec.com Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Change automation: A step-by-step guide to network security policy change management

    Avivi Siman-Tov, Director of Product Management at AlgoSec, discusses the benefits of network automation and takes us through a... Firewall Change Management Change automation: A step-by-step guide to network security policy change management Avivi Siman Tov 2 min read Avivi Siman Tov Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 10/21/21 Published Avivi Siman-Tov, Director of Product Management at AlgoSec, discusses the benefits of network automation and takes us through a step-by-step process to standardize change management In today’s fast-paced, data-driven environment, the only constant that businesses can bank on is change. For organizations to function and compete in the modern digital landscape, they need their data to be able to move freely and unobstructed through every branch of their business, unimpeded by security issues that require constant manual attention. The network is arguably the beating heart of an organization but keeping it ticking requires more maintenance than it once did, owing to constantly changing risk profiles and circumstances. That’s why a greater number of businesses are turning to change automation to bridge the gap between network alerts and the action that needs to be taken. Barriers to automation According to Gartner , organizations that can automate more than 70% of their network changes can reduce the number of outages by at least 50% and deliver services up to 50% faster. That’s because a lot of legacy solutions tend to take a reactive rather than proactive approach to dealing with security. There are multiple controls in place that simply don’t talk to each other. While most businesses get alerts from SIEM solutions and vulnerability scanners, responding to them turns into a full-time job, distracting your team from other important work they could be doing. Most organizations know that manual policy changes impact their productivity, but they’re afraid to take the leap to automation because of an ill-placed perception around security. Production environments in all organizations are maintained by different teams — for example, DevOps, maintenance, cloud security, IT, and more. Not all of these teams are educated to the same level in security matters, and some see it as a constraint that slows their work. This can lead to conflict between teams, which means that automation is not always welcome. Despite some resistance to change, enterprise-wide change automation makes it possible to transform network security policies without needing to reinvent the wheel or replace existing business processes. Automation and actionable intelligence are proven to enhance security and business agility without the stress often associated with misconfigurations caused by manual, ad-hoc processes. A typical network change workflow By elevating firewall change management from a manual, arduous task to a fully automated, zero-touch process, networks can become more agile and organizations far more adaptive. There are several steps that organizations need to take towards complete network security automation, from a simple change request through to implementation and validation. Let’s take a look at the most common steps in establishing automation for a simple change request. Step 1 – Request a network change Every change begins with a request. At this stage, you need to clarify who is asking for the amendment and why because sometimes the request is unnecessary or covered by an existing ruleset. Step 2 – Find relevant security devices Once this request is translated, the change automation platform will handle the request and implement the changes to hybrid networks. The administrator will be able to see which firewall and routing devices are involved and what impact the change will have. Step 3 – Plan change The change automation platform understands how to deal with different vendor-specific settings and how to implement the requests in a way that avoids creating any duplicates. Step 4 – Risk check The administrator will get a ‘ what if’ analysis, which checks the change for any risks. In this phase, the decision as to whether to allow the change and expose the network to the risk mentioned is in the hands of the network admin or security manager, depending on who is handling this phase. Step 5 – Push change to device Once planned changes are approved, the ‘magic’ happens. The change automation platform implements and pushes the changes to the desired devices automatically, either through APIs or directly to the device (CLI). This is a fully automated action that can be conducted on multiple devices, whether cloud-based or on-premises. The push can be done in a scheduled manner, in your maintenance window, or on-demand. Step 6 – Validate change At the end of each request, the solution will check that the request was successfully implemented across all devices. The solution also provides ongoing audits of the whole process, enabling easy checking of each stage. Step 7 – Documentation and logging Network security automation platforms can provide you with a full, automated audit trail. Documentation happens on the go, saving IT and security teams time and accelerating tedious network compliance management tasks. Put your trust in network automation While change management is complex stuff, the decision for your business is simple. It’s like the engine of an expensive car. Would you drive at high speeds if you didn’t have your brakes tested or a steering wheel to keep your course straight? Hopefully, the answer is no. With AlgoSec FireFlow , you can automate the security policy change process without introducing any element of risk, vulnerability, or compliance violation. AlgoSec FireFlow allows you to analyze every change before it is introduced, and validate successful changes as intended, all within your existing IT Service Management (ITSM) solutions . By putting your trust in us we can put you firmly in the driving seat with zero-touch change management and secure application deployment. For more information, or to arrange a demo , visit our website . Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

bottom of page