

Search results
690 results found with an empty search
- AlgoSec acquires Prevasio to disrupt the Agentless Cloud Security market
Organizations of all sizes can now protect their cloud-native applications easily and cost-effectively across containers and all other cloud assets AlgoSec acquires Prevasio to disrupt the Agentless Cloud Security market Organizations of all sizes can now protect their cloud-native applications easily and cost-effectively across containers and all other cloud assets December 7, 2022 Speak to one of our experts Ridgefield Park, NJ, December 6, 2022 – AlgoSec, a global cybersecurity leader in securing application connectivity, announced today that it has acquired Prevasio, a SaaS cloud-native application protection platform (CNAPP) that includes an agentless cloud security posture management (CSPM) platform, anti-malware scan, vulnerability assessment and dynamic analysis for containers. As applications rapidly migrate to the Cloud, security teams are being flooded with alerts. These teams are struggling to detect and prioritize risks through Cloud providers’ native security controls, especially in multi-cloud environments. Furthermore, security teams are hard-pressed to find solutions that meet their budgetary restrictions. To answer this need, AlgoSec will offer the Prevasio solution at aggressive pricing to new customers, as well as the existing 1,800 blue chip enterprise organizations they currently serve, allowing them to reduce their cloud security costs. Prevasio’s user-friendly, cost-effective SaaS solution is designed for hardening security posture across all cloud assets, including containers. The solution provides increased visibility into security issues and compliance gaps, enabling the cloud operations and security teams to prioritize risks and comply with CIS benchmarks. Prevasio customers have successfully reduced administration time and achieved operational cost reductions, even across small teams, within days of operationalization. Leveraging patented technology developed by SRI International, one of the world’s largest research institutes and the developer of Siri and many other leading technologies, Prevasio’s key capabilities include: Analysis of all assets across AWS, Azure, and Google Cloud, offering a unified view in a single pane of glass Prioritized risk according to CIS benchmarks, HIPPA and PCI regulations Blazing fast static- and dynamic- agentless vulnerability scanning of containers Assessment and detection of cybersecurity threats Instantaneous connection to AWS, Azure, or Google Cloud accounts without installation or deployment Furthermore, AlgoSec will incorporate SRI artificial intelligence (AI) capabilities into the Prevasio solution. “Applications are the lifeblood of organizations. As such, our customers have an urgent need to effectively secure the connectivity of those applications across cloud and hybrid estates to avoid unpleasant surprises. With Prevasio, organizations can now confidently secure their cloud-native applications to increase organizational agility and harden security posture,” said Yuval Baron, AlgoSec CEO. For a free trial of the Prevasio solution, click here . About AlgoSec AlgoSec, a global cybersecurity leader, empowers organizations to secure application connectivity by automating connectivity flows and security policy, anywhere. The AlgoSec platform enables the world’s most complex organizations to gain visibility, reduce risk, achieve compliance at the application-level and process changes at zero-touch across the hybrid network. AlgoSec’s patented application-centric view of the hybrid network enables business owners, application owners, and information security professionals to talk the same language, so organizations can deliver business applications faster while achieving a heightened security posture. Over 1,800 of the world’s leading organizations trust AlgoSec to help secure their most critical workloads across public cloud, private cloud, containers, and on-premises networks. About Prevasio Prevasio, an AlgoSec company, helps organizations of all sizes protect their cloud-native applications across containers and all other cloud assets. Prevasio’s agentless cloud-native application protection platform (CNAPP) provides increased visibility into security and compliance gaps, enabling the cloud operations and security teams to prioritize risks and ensure compliance with internet security benchmarks. Acquired by AlgoSec in 2022, Prevasio combines cloud-native security with SRI International’s proprietary AI capabilities and AlgoSec’s expertise in securing 1,800 of the world’s most complex organizations.
- AlgoSec Wins Two Cisco Partnership Awards, Recognizing the Value for Securing Application Connectivity Across Hybrid Networks
Cisco awards AlgoSec with EMEA Co-Sell Partner of the Year and Cisco Meraki Marketplace Tech Partner of the Month based on the company’s continued innovation and dedication to application security AlgoSec Wins Two Cisco Partnership Awards, Recognizing the Value for Securing Application Connectivity Across Hybrid Networks Cisco awards AlgoSec with EMEA Co-Sell Partner of the Year and Cisco Meraki Marketplace Tech Partner of the Month based on the company’s continued innovation and dedication to application security November 20, 2024 Speak to one of our experts RIDGEFIELD PARK, NJ, November 20, 2024 – Global cybersecurity leader AlgoSec announced it was named November 2024’s Cisco Meraki Marketplace Tech Partner of the Month. AlgoSec received the award for its Secure Application Connectivity platform, which transforms network security policy management by intelligently automating and orchestrating security change processes. Cisco’s cloud-managed Meraki platform enables users to centrally manage and configure security solutions, bridging the gap between hardware and the cloud to deliver a high-performance network. When integrated with AlgoSec ’s secure application connectivity platform, joint customers can achieve holistic visibility across their Cisco and multivendor network, expedite security policy changes, reduce risks, prevent outages and ensure continuous compliance. “We are thrilled to be recognized as a value-added partner by Cisco,” said Reinhard Eichborn , Director of Strategic Alliances at AlgoSec. “In the current security landscape, embracing automation to eliminate human errors, misconfigurations and prolonged outages is vital. Our partnership with Cisco enables us to do this by giving customers a holistic view of how applications operate within their network, removing the need for manual monitoring and data processing. It’s a single source of truth for application security management that helps sustain business-critical operations and limit the threat of a potential data breach." AlgoSec has been recognized by winning Cisco’s Co-Sell Partner of the Year EMEA award for its collaborative efforts to jointly market and sell complementary solutions alongside Cisco to allow joint customers to secure their complex networks by focusing on the applications that run their businesses. The dynamic partnership focuses on improving visibility, automating application connectivity changes and easily discovering and managing risks by integrating the AlgoSec platform with Cisco’s network solutions. The awards program honors top-performing partners that have introduced innovative processes, seized new opportunities and adopted sales approaches that achieve substantial business outcomes for customers. In today’s threat environment, innovative security measures that prioritize security at the application level have become essential. Further underscoring AlgoSec’s commitment to application security, the company was recently recognized by Cyber Defense Magazine’s Top InfoSec Innovator 2024 awards as a winner in the Hot Company Application Security and Most Innovative Network Security and Management categories. The program awards companies that demonstrate understanding of tomorrow’s threats, today, providing a cost-effective solution and innovating in unexpected ways that can help mitigate cyber risk and get one step ahead of the next breach. To find out more visit https://www.algosec.com/cisco-algosec/ . About AlgoSec AlgoSec, a global cybersecurity leader, empowers organizations to secure application connectivity and cloud-native applications throughout their multi-cloud and hybrid network. Trusted by more than 1,800 of the world’s leading organizations, AlgoSec’s application-centric approach enables secure acceleration of business application deployment by centrally managing application connectivity and security policies across the public clouds, private clouds, containers, and on-premises networks. Using its unique vendor-agnostic deep algorithm for intelligent change management automation, AlgoSec enables the acceleration of digital transformation projects, helps prevent business application downtime and substantially reduces manual work and exposure to security risks. AlgoSec’s policy management and CNAPP platforms provide a single source for visibility into security and compliance issues within cloud-native applications as well as across the hybrid network environment, to ensure ongoing adherence to internet security standards, industry, and internal regulations. Learn how AlgoSec enables application owners, information security experts, DevSecOps and cloud security teams to deploy business applications up to 10 times faster while maintaining security at https://www.algosec.com .
- Network Is A Maze AlgoSec - AlgoSec
Network Is A Maze AlgoSec Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- Cessation of Misconfigurations: Common Network Misconfiguration Risks & How to Avoid Them | AlgoSec
Best practices for network security governance in AWS and hybrid network environments Webinars Cessation of Misconfigurations: Common Network Misconfiguration Risks & How to Avoid Them Avivi Siman-Tov, AlgoSec’s Director of Product | February 18, 2020 Misconfigurations aren’t simply inconvenient mistakes but serious security threats. According to Gartner, 99% of all firewall breaches will be caused by misconfigurations by 2020 and misconfigurations made OWASP’s list of Top 10 most critical web application security risks. A single change to a network device can have far-reaching effects on your business and create security holes for cybercriminals, impact your audits, and cause costly outages that bring your business to a standstill. In this webinar, Avivi Siman-Tov, AlgoSec’s Director of Product, will show examples of common misconfigurations, including device changes, business application connectivity changes, and data center migrations. He will also reveal specific techniques to help you avoid them. Watch the webinar to learn how to: Understand and map your entire network before you make a change Proactively assess the impact of a change to ensure it does not break connectivity, affect compliance or create a security hole and understand the impact of changes to your entire network Maximize the capabilities of network management automation to avoid common misconfigurations Avoid common mistakes when making changes to your network security devices February 18, 2020 Avivi Siman Tov Director of Product Relevant resources Firewall Rule Recertification - An Application-Centric Approach Keep Reading Securing & managing hybrid network security See Documentation Application first cloud security See Documentation Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- THE FIREWALL AUDIT CHECKLIST Six Best Practices for Simplifying Firewall Compliance and Risk Mitigation - AlgoSec
THE FIREWALL AUDIT CHECKLIST Six Best Practices for Simplifying Firewall Compliance and Risk Mitigation Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- AlgoSec | Sunburst Backdoor: A Deeper Look Into The SolarWinds’ Supply Chain Malware
Update : Next two parts of the analysis are available here and here . As earlier reported by FireEye, the actors behind a global... Cloud Security Sunburst Backdoor: A Deeper Look Into The SolarWinds’ Supply Chain Malware Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/15/20 Published Update : Next two parts of the analysis are available here and here . As earlier reported by FireEye, the actors behind a global intrusion campaign have managed to trojanise SolarWinds Orion business software updates in order to distribute malware. The original FireEye write-up already provides a detailed description of this malware. Nevertheless, as the malicious update SolarWinds-Core-v2019.4.5220-Hotfix5.msp was still available for download for hours since the FireEye’s post, it makes sense to have another look into the details of its operation. The purpose of this write-up is to provide new information, not covered in the original write-up. Any overlaps with the original description provided by FireEye are not intentional. For start, the malicious component SolarWinds.Orion.Core.BusinessLayer.dll inside the MSP package is a non-obfuscated .NET assembly. It can easily be reconstructed with a .NET disassembler, such as ILSpy , and then fully reproduced in C# code, using Microsoft Visual Studio. Once reproduced, it can be debugged to better understand how it works. In a nutshell, the malicious DLL is a backdoor. It is loaded into the address space of the legitimate SolarWinds Orion process SolarWinds.BusinessLayerHost.exe or SolarWinds.BusinessLayerHostx64.exe . The critical strings inside the backdoor’s class SolarWinds.Orion.Core.BusinessLayer.OrionImprovementBusinessLayer are encoded with the DeflateStream Class of the .NET’s System.IO.Compression library, coupled with the standard base64 encoder. Initialisation Once loaded, the malware checks if its assembly file was created earlier than 12, 13, or 14 days ago. The exact number of hours it checks is a random number from 288 to 336. Next, it reads the application settings value ReportWatcherRetry . This value keeps the reporting status, and may be set to one of the states: New (4) Truncate (3) Append (5) When the malware runs the first time, its reporting status variable ReportWatcherRetry is set to New (4) . The reporting status is an internal state that drives the logic. For example, if the reporting status is set to Truncate , the malware will stop operating by first disabling its networking communications, and then disabling other security tools and antivirus products. In order to stay silent, the malware periodically falls asleep for a random period of time that varies between 30 minutes and 2 hours. At the start, the malware obtains the computer’s domain name . If the domain name is empty, the malware quits. It then generates a 8-byte User ID, which is derived from the system footprint. In particular, it is generated from MD5 hash of a string that consists from the 3 fields: the first or default operational (can transmit data packets) network interface’s physical address computer’s domain name UUID created by Windows during installation (machine’s unique ID) Even though it looks random, the User ID stays permanent as long as networking configuration and the Windows installation stay the same. Domain Generation Algorithm The malware relies on its own CryptoHelper class to generate a domain name. This class is instantiated from the 8-byte User ID and the computer’s domain name, encoded with a substitution table: “rq3gsalt6u1iyfzop572d49bnx8cvmkewhj” . For example, if the original domain name is “ domain “, its encoded form will look like: “ n2huov “. To generate a new domain, the malware first attempts to resolve domain name “ api.solarwinds.com “. If it fails to resolve it, it quits. The first part of the newly generated domain name is a random string, produced from the 8-byte User ID, a random seed value, and encoded with a custom base64 alphabet “ph2eifo3n5utg1j8d94qrvbmk0sal76c” . Because it is generated from a random seed value, the first part of the newly generated domain name is random. For example, it may look like “ fivu4vjamve5vfrt ” or “ k1sdhtslulgqoagy “. To produce the domain name, this string is then appended with the earlier encoded domain name (such as “ n2huov “) and a random string, selected from the following list: .appsync-api.eu-west-1[.]avsvmcloud[.]com .appsync-api.us-west-2[.]avsvmcloud[.]com .appsync-api.us-east-1[.]avsvmcloud[.]com .appsync-api.us-east-2[.]avsvmcloud[.]com For example, the final domain name may look like: fivu4vjamve5vfrtn2huov[.]appsync-api.us-west-2[.]avsvmcloud[.]com or k1sdhtslulgqoagyn2huov[.]appsync-api.us-east-1[.]avsvmcloud[.]com Next, the domain name is resolved to an IP address, or to a list of IP addresses. For example, it may resolve to 20.140.0.1 . The resolved domain name will be returned into IPAddress structure that will contain an AddressFamily field – a special field that specifies the addressing scheme. If the host name returned in the IPAddress structure is different to the queried domain name, the returned host name will be used as a C2 host name for the backdoor. Otherwise, the malware will check if the resolved IP address matches one of the patterns below, in order to return an ‘address family’: IP Address Subnet Mask ‘Address Family’ 10.0.0.0 255.0.0.0 Atm 172.16.0.0 255.240.0.0 Atm 192.168.0.0 255.255.0.0 Atm 224.0.0.0 240.0.0.0 Atm fc00:: fe00:: Atm fec0:: ffc0:: Atm ff00:: ff00:: Atm 41.84.159.0 255.255.255.0 Ipx 74.114.24.0 255.255.248.0 Ipx 154.118.140.0 255.255.255.0 Ipx 217.163.7.0 255.255.255.0 Ipx 20.140.0.0 255.254.0.0 ImpLink 96.31.172.0 255.255.255.0 ImpLink 131.228.12.0 255.255.252.0 ImpLink 144.86.226.0 255.255.255.0 ImpLink 8.18.144.0 255.255.254.0 NetBios 18.130.0.0 255.255.0.0 NetBios 71.152.53.0 255.255.255.0 NetBios 99.79.0.0 255.255.0.0 NetBios 87.238.80.0 255.255.248.0 NetBios 199.201.117.0 255.255.255.0 NetBios 184.72.0.0 255.254.0.0 NetBios For example, if the queried domain resolves to 20.140.0.1 , it will match the entry in the table 20.140.0.0 , for which the returned ‘address family’ will be ImpLink . The returned ‘address family’ invokes an additional logic in the malware. Disabling Security Tools and Antivirus Products If the returned ‘address family’ is ImpLink or Atm , the malware will enumerate all processes and for each process, it will check if its name matches one of the pre-defined hashes. Next, it repeats this processed for services and for the drivers installed in the system. If a process name or a full path of an installed driver matches one of the pre-defined hashes, the malware will disable it. For hashing, the malware relies on Fowler–Noll–Vo algorithm. For example, the core process of Windows Defender is MsMpEng.exe . The hash value of “ MsMpEng ” string is 5183687599225757871 . This value is specifically enlisted the malware’s source under a variable name timeStamps : timeStamps = new ulong[1] { 5183687599225757871uL } The service name of Windows Defender is windefend – the hash of this string ( 917638920165491138 ) is also present in the malware body. As a result, the malicioius DLL will attempt to stop the Windows Defender service. In order to disable various security tools and antivirus products, the malware first grants itself SeRestorePrivilege and SeTakeOwnershipPrivilege privileges, using the native AdjustTokenPrivileges() API. With these privileges enabled, the malware takes ownership of the service registry keys it intends to manipulate. The new owner of the keys is first attempted to be explicitly set to Administrator account. If such account is not present, the malware enumerates all user accounts, looking for a SID that represents the administrator account. The malware uses Windows Management Instrumentation query “ Select * From Win32_UserAccount ” to obtain the list of all users. For each enumerated user, it makes sure the account is local and then, when it obtains its SID, it makes sure the SID begins with S-1-5- and ends with -500 in order to locate the local administrator account. Once such account is found, it is used as a new owner for the registry keys, responsible for manipulation of the services of various security tools and antivirus products. With the new ownership set, the malware then disables these services by setting their Start value to 4 (Disabled): registryKey2.SetValue(“Start”), 4, RegistryValueKind.DWord); HTTP Backdoor If the returned ‘address family’ for the resolved domain name is NetBios , as specified in the lookup table above, the malware will initialise its HttpHelper class, which implements an HTTP backdoor. The backdoor commands are covered in the FireEye write-up, so let’s check only a couple of commands to see what output they produce. One of the backdoor commands is CollectSystemDescription . As its name suggests, it collects system information. By running the code reconstructed from the malware, here is an actual example of the data collected by the backdoor and delivered to the attacker’s C2 with a separate backdoor command UploadSystemDescription : 1. %DOMAIN_NAME% 2. S-1-5-21-298510922-2159258926-905146427 3. DESKTOP-VL39FPO 4. UserName 5. [E] Microsoft Windows NT 6.2.9200.0 6.2.9200.0 64 6. C:\WINDOWS\system32 7. 0 8. %PROXY_SERVER% Description: Killer Wireless-n/a/ac 1535 Wireless Network Adapter #2 MACAddress: 9C:B6:D0:F6:FF:5D DHCPEnabled: True DHCPServer: 192.168.20.1 DNSHostName: DESKTOP-VL39FPO DNSDomainSuffixSearchOrder: Home DNSServerSearchOrder: 8.8.8.8, 192.168.20.1 IPAddress: 192.168.20.30, fe80::8412:d7a8:57b9:5886 IPSubnet: 255.255.255.0, 64 DefaultIPGateway: 192.168.20.1, fe80::1af1:45ff:feec:a8eb NOTE: Field #7 specifies the number of days (0) since the last system reboot. GetProcessByDescription command will build a list of processes running on a system. This command accepts an optional argument, which is one of the custom process properties enlisted here . If the optional argument is not specified, the backdoor builds a process list that looks like: [ 1720] svchost [ 8184] chrome [ 4732] svchost If the optional argument is specified, the backdoor builds a process list that includes the specified process property in addition to parent process ID, username and domain for the process owner. For example, if the optional argument is specified as “ ExecutablePath “, the GetProcessByDescription command may return a list similar to: [ 3656] sihost.exe C:\WINDOWS\system32\sihost.exe 1720 DESKTOP-VL39FPO\UserName [ 3824] svchost.exe C:\WINDOWS\system32\svchost.exe 992 DESKTOP-VL39FPO\UserName [ 9428] chrome.exe C:\Program Files (x86)\Google\Chrome\Application\chrome.exe 4600 DESKTOP-VL39FPO\UserName Other backdoor commands enable deployment of the 2nd stage malware. For example, the WriteFile command will save the file: using (FileStream fileStream = new FileStream(path, FileMode.Append, FileAccess.Write)) { fileStream.Write(array, 0, array.Length); } The downloaded 2nd stage malware can then the executed with RunTask command: using (Process process = new Process()) { process.StartInfo = new ProcessStartInfo(fileName, arguments) { CreateNoWindow = false, UseShellExecute = false }; if (process.Start()) … Alternatively, it can be configured to be executed with the system restart, using registry manipulation commands, such as SetRegistryValue . Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- Migrating Policies To Cisco ACI Policy Portability - AlgoSec
Migrating Policies To Cisco ACI Policy Portability Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- AlgoSec | The Application Migration Checklist
All organizations eventually inherit outdated technology infrastructure. As new technology becomes available, old apps and services... Firewall Change Management The Application Migration Checklist Asher Benbenisty 2 min read Asher Benbenisty Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 10/25/23 Published All organizations eventually inherit outdated technology infrastructure. As new technology becomes available, old apps and services become increasingly expensive to maintain. That expense can come in a variety of forms: Decreased productivity compared to competitors using more modern IT solutions. Greater difficulty scaling IT asset deployments and managing the device life cycle . Security and downtime risks coming from new vulnerabilities and emerging threats. Cloud computing is one of the most significant developments of the past decade. Organizations are increasingly moving their legacy IT assets to new environments hosted on cloud services like Amazon Web Services or Microsoft Azure. Cloud migration projects enable organizations to dramatically improve productivity, scalability, and security by transforming on-premises applications to cloud-hosted solutions. However, cloud migration projects are among the most complex undertakings an organization can attempt. Some reports state that nine out of ten migration projects experience failure or disruption at some point, and only one out of four meet their proposed deadlines. The better prepared you are for your application migration project , the more likely it is to succeed. Keep the following migration checklist handy while pursuing this kind of initiative at your company. Step 1: Assessing Your Applications The more you know about your legacy applications and their characteristics, the more comprehensive you can be with pre-migration planning. Start by identifying the legacy applications that you want to move to the cloud. Pay close attention to the dependencies that your legacy applications have. You will need to ensure the availability of those resources in an IT environment that is very different from the typical on-premises data center. You may need to configure cloud-hosted resources to meet specific needs that are unique to your organization and its network architecture. Evaluate the criticality of each legacy application you plan on migrating to the cloud. You will have to prioritize certain applications over others, minimizing disruption while ensuring the cloud-hosted infrastructure can support the workload you are moving to. There is no one-size-fits-all solution to application migration. The inventory assessment may bring new information to light and force you to change your initial approach. It’s best that you make these accommodations now rather than halfway through the application migration project. Step 2: Choosing the Right Migration Strategy Once you know what applications you want to move to the cloud and what additional dependencies must be addressed for them to work properly, you’re ready to select a migration strategy. These are generalized models that indicate how you’ll transition on-premises applications to cloud-hosted ones in the context of your specific IT environment. Some of the options you should gain familiarity with include: Lift and Shift (Rehosting). This option enables you to automate the migration process using tools like CloudEndure Migration, AWS VM Import/Export, and others. The lift and shift model is well-suited to organizations that need to migrate compatible large-scale enterprise applications without too many additional dependencies, or organizations that are new to the cloud. Replatforming. This is a modified version of the lift and shift model. Essentially, it introduces an additional step where you change the configuration of legacy apps to make them better-suited to the cloud environment. By adding a modernization phase to the process, you can leverage more of the cloud’s unique benefits and migrate more complex apps. Refactoring/Re-architecting. This strategy involves rewriting applications from scratch to make them cloud-native. This allows you to reap the full benefits of cloud technology. Your new applications will be scalable, efficient, and agile to the maximum degree possible. However, it’s a time-consuming, resource-intensive project that introduces significant business risk into the equation. Repurchasing. This is where the organization implements a fully mature cloud architecture as a managed service. It typically relies on a vendor offering cloud migration through the software-as-a-service (SaaS) model. You will need to pay licensing fees, but the technical details of the migration process will largely be the vendor’s responsibility. This is an easy way to add cloud functionality to existing business processes, but it also comes with the risk of vendor lock-in. Step 3: Building Your Migration Team The success of your project relies on creating and leading a migration team that can respond to the needs of the project at every step. There will be obstacles and unexpected issues along the way – a high-quality team with great leadership is crucial for handling those problems when they arise. Before going into the specifics of assembling a great migration team, you’ll need to identify the key stakeholders who have an interest in seeing the project through. This is extremely important because those stakeholders will want to see their interests represented at the team level. If you neglect to represent a major stakeholder at the team level, you run the risk of having major, expensive project milestones rejected later on. Not all stakeholders will have the same level of involvement, and few will share the same values and goals. Managing them effectively means prioritizing the values and goals they represent, and choosing team members accordingly. Your migration team will consist of systems administrators, technical experts, and security practitioners, and include input from many other departments. You’ll need to formalize a system of communicating inside the core team and messaging stakeholders outside of it. You may also wish to involve end users as a distinct part of your migration team and dedicate time to addressing their concerns throughout the process. Keep team members’ stakeholder alignments and interests in mind when assigning responsibilities. For example, if a particular configuration step requires approval from the finance department, you’ll want to make sure that someone representing that department is involved from the beginning. Step 4: Creating a Migration Plan It’s crucial that every migration project follows a comprehensive plan informed by the needs of the organization itself. Organizations pursue cloud migration for many different reasons – your plan should address the problems you expect cloud-hosted technology to solve. This might mean focusing on reducing costs, enabling entry into a new market, or increasing business agility – or all three. You may have additional reasons for pursuing an application migration plan. This plan should also include data mapping . Choosing the right application performance metrics now will help make the decision-making process much easier down the line. Some of the data points that cloud migration specialists recommend capturing include: Duration highlights the value of employee labor-hours as they perform tasks throughout the process. Operational duration metrics can tell you how much time project managers spend planning the migration process, or whether one phase is taking much longer than another, and why. Disruption metrics can help identify user experience issues that become obstacles to onboarding and full adoption. Collecting data about the availability of critical services and the number of service tickets generated throughout the process can help you gauge the overall success of the initiative from the user’s perspective. Cost includes more than data transfer rates. Application migration initiatives also require creating dependency mappings, changing applications to make them cloud-native, and significant administrative costs. Up to 50% of your migration’s costs pay for labor , and you’ll want to keep close tabs on those costs as the process goes on. Infrastructure metrics like CPU usage, memory usage, network latency, and load balancing are best captured both before and after the project takes place. This will let you understand and communicate the value of the project in its entirety using straightforward comparisons. Application performance metrics like availability figures, error rates, time-outs and throughput will help you calculate the value of the migration process as a whole. This is another post-cloud migration metric that can provide useful before-and-after data. You will also want to establish a series of cloud service-level agreements (SLAs) that ensure a predictable minimum level of service is maintained. This is an important guarantee of the reliability and availability of the cloud-hosted resources you expect to use on a daily basis. Step 5: Mapping Dependencies Mapping dependencies completely and accurately is critical to the success of any migration project. If you don’t have all the elements in your software ecosystem identified correctly, you won’t be able to guarantee that your applications will work in the new environment. Application dependency mapping will help you pinpoint which resources your apps need and allow you to make those resources available. You’ll need to discover and assess every workload your organization undertakes and map out the resources and services it relies on. This process can be automated, which will help large-scale enterprises create accurate maps of complex interdependent processes. In most cases, the mapping process will reveal clusters of applications and services that need to be migrated together. You will have to identify the appropriate windows of opportunity for performing these migrations without disrupting the workloads they process. This often means managing data transfer and database migration tasks and carrying them out in a carefully orchestrated sequence. You may also discover connectivity and VPN requirements that need to be addressed early on. For example, you may need to establish protocols for private access and delegate responsibility for managing connections to someone on your team. Project stakeholders may have additional connectivity needs, like VPN functionality for securing remote connections. These should be reflected in the application dependency mapping process. Multi-cloud compatibility is another issue that will demand your attention at this stage. If your organization plans on using multiple cloud providers and configuring them to run workloads specific to their platform, you will need to make sure that the results of these processes are communicated and stored in compatible formats. Step 6: Selecting a Cloud Provider Once you fully understand the scope and requirements of your application migration project, you can begin comparing cloud providers. Amazon, Microsoft, and Google make up the majority of all public cloud deployments, and the vast majority of organizations start their search with one of these three. Amazon AW S has the largest market share, thanks to starting its cloud infrastructure business several years before its major competitors did. Amazon’s head start makes finding specialist talent easier, since more potential candidates will have familiarity with AWS than with Azure or Google Cloud. Many different vendors offer services through AWS, making it a good choice for cloud deployments that rely on multiple services and third-party subscriptions. Microsoft Azure has a longer history serving enterprise customers, even though its cloud computing division is smaller and younger than Amazon’s. Azure offers a relatively easy transition path that helps enterprise organizations migrate to the cloud without adding a large number of additional vendors to the process. This can help streamline complex cloud deployments, but also increases your reliance on Microsoft as your primary vendor. Google Cloud is the third runner-up in terms of market share. It continues to invest in cloud technologies and is responsible for a few major innovations in the space – like the Kubernetes container orchestration system. Google integrates well with third-party applications and provides a robust set of APIs for high-impact processes like translation and speech recognition. Your organization’s needs will dictate which of the major cloud providers offers the best value. Each provider has a different pricing model, which will impact how your organization arrives at a cost-effective solution. Cloud pricing varies based on customer specifications, usage, and SLAs, which means no single provider is necessarily “the cheapest” or “the most expensive” – it depends on the context. Additional cost considerations you’ll want to take into account include scalability and uptime guarantees. As your organization grows, you will need to expand its cloud infrastructure to accommodate more resource-intensive tasks. This will impact the cost of your cloud subscription in the future. Similarly, your vendor’s uptime guarantee can be a strong indicator of how invested it is in your success. Given all vendors work on the shared responsibility model, it may be prudent to consider an enterprise data backup solution for peace of mind. Step 7: Application Refactoring If you choose to invest time and resources into refactoring applications for the cloud, you’ll need to consider how this impacts the overall project. Modifying existing software to take advantage of cloud-based technologies can dramatically improve the efficiency of your tech stack, but it will involve significant risk and up-front costs. Some of the advantages of refactoring include: Reduced long-term costs. Developers refactor apps with a specific context in mind. The refactored app can be configured to accommodate the resource requirements of the new environment in a very specific manner. This boosts the overall return of investing in application refactoring in the long term and makes the deployment more scalable overall. Greater adaptability when requirements change . If your organization frequently adapts to changing business requirements, refactored applications may provide a flexible platform for accommodating unexpected changes. This makes refactoring attractive for businesses in highly regulated industries, or in scenarios with heightened uncertainty. Improved application resilience . Your cloud-native applications will be decoupled from their original infrastructure. This means that they can take full advantage of the benefits that cloud-hosted technology offers. Features like low-cost redundancy, high-availability, and security automation are much easier to implement with cloud-native apps. Some of the drawbacks you should be aware of include: Vendor lock-in risks . As your apps become cloud-native, they will naturally draw on cloud features that enhance their capabilities. They will end up tightly coupled to the cloud platform you use. You may reach a point where withdrawing those apps and migrating them to a different provider becomes infeasible, or impossible. Time and talent requirements . This process takes a great deal of time and specialist expertise. If your organization doesn’t have ample amounts of both, the process may end up taking too long and costing too much to be feasible. Errors and vulnerabilities . Refactoring involves making major changes to the way applications work. If errors work their way in at this stage, it can deeply impact the usability and security of the workload itself. Organizations can use cloud-based templates to address some of these risks, but it will take comprehensive visibility into how applications interact with cloud security policies to close every gap. Step 8: Data Migration There are many factors to take into consideration when moving data from legacy applications to cloud-native apps. Some of the things you’ll need to plan for include: Selecting the appropriate data transfer method . This depends on how much time you have available for completing the migration, and how well you plan for potential disruptions during the process. If you are moving significant amounts of data through the public internet, sidelining your regular internet connection may be unwise. Offline transfer doesn’t come with this risk, but it will include additional costs. Ensuring data center compatibility. Whether transferring data online or offline, compatibility issues can lead to complex problems and expensive downtime if not properly addressed. Your migration strategy should include a data migration testing strategy that ensures all of your data is properly formatted and ready to use the moment it is introduced to the new environment. Utilizing migration tools for smooth data transfer . The three major cloud providers all offer cloud migration tools with multiple tiers and services. You may need to use these tools to guarantee a smooth transfer experience, or rely on a third-party partner for this step in the process. Step 9: Configuring the Cloud Environment By the time your data arrives in its new environment, you will need to have virtual machines and resources set up to seamlessly take over your application workloads and processes. At the same time, you’ll need a comprehensive set of security policies enforced by firewall rules that address the risks unique to cloud-hosted infrastructure. As with many other steps in this checklist, you’ll want to carefully assess, plan, and test your virtual machine deployments before deploying them in a live production environment. Gather information about your source and target environment and document the workloads you wish to migrate. Set up a test environment you can use to make sure your new apps function as expected before clearing them for live production. Similarly, you may need to configure and change firewall rules frequently during the migration process. Make sure that your new deployments are secured with reliable, well-documented security policies. If you skip the documentation phase of building your firewall policy, you run the risk of introducing security vulnerabilities into the cloud environment, and it will be very difficult for you to identify and address them later on. You will also need to configure and deploy network interfaces that dictate where and when your cloud environment will interact with other networks, both inside and outside your organization. This is your chance to implement secure network segmentation that protects mission-critical assets from advanced and persistent cyberattacks. This is also the best time to implement disaster recovery mechanisms that you can rely on to provide business continuity even if mission-critical assets and apps experience unexpected downtime. Step 10: Automating Workflows Once your data and apps are fully deployed on secure cloud-hosted infrastructure, you can begin taking advantage of the suite of automation features your cloud provider offers. Depending on your choice of migration strategy, you may be able to automate repetitive tasks, streamline post-migration processes, or enhance the productivity of entire departments using sophisticated automation tools. In most cases, automating routine tasks will be your first priority. These automations are among the simplest to configure because they largely involve high-volume, low-impact tasks. Ideally, these tasks are also isolated from mission-critical decision-making processes. If you established a robust set of key performance indicators earlier on in the migration project, you can also automate post-migration processes that involve capturing and reporting these data points. Your apps will need to continue ingesting and processing data, making data validation another prime candidate for workflow automation. Cloud-native apps can ingest data from a wide range of sources, but they often need some form of validation and normalization to produce predictable results. Ongoing testing and refinement will help you make the most of your migration project moving forward. How AlgoSec Enables Secure Application Migration Visibility and Di scovery : AlgoSec provide s comprehensive visibility into your existing on-premises network environment. It automatically discovers all network devices, applications, and their dependencies. This visibility is crucial when planning a secure migration, ensuring no critical elements get overlooked in the process. Application Dependency Mapping : AlgoSec’s application dependency mapping capabilities allow you to understand how different applications and services interact within your network. This knowledge is vital during migration to avoid disrupting critical dependencies. Risk Assessment : AlgoSec assesses the security and compliance risks associated with your migration plan. It identifies potential vulnerabilities, misconfigurations, and compliance violations that could impact the security of the migrated applications. Security Policy Analysis : Before migrating, AlgoSec helps you analyze your existing security policies and rules. It ensures that security policies are consistent and effective in the new cloud or data center environment. Misconfigurations and unnecessary rules can be eliminated, reducing the attack surface. Automated Rule Optimiz ation : AlgoSec automates the o ptimization of security rules. It identifies redundant rules, suggests rule consolidations, and ensures that only necessary traffic is allowed, helping you maintain a secure environment during migration. Change Management : During the migration process, changes to security policies and firewall rules are often necessary. AlgoSec facilitates change management by providing a streamlined process for requesting, reviewing, and implementing rule changes. This ensures that security remains intact throughout the migration. Compliance and Governance : AlgoSec helps maintain compliance with industry regulations and security best practices. It generates compliance reports, ensures rule consistency, and enforces security policies, even in the new cloud or data center environment. Continuous Monitoring and Auditing : Post-migration, AlgoSec continues to monitor and audit your security policies and network traffic. It alerts you to any anomalies or security breaches, ensuring the ongoing security of your migrated applications. Integration with Cloud Platforms : AlgoSec integrates seamlessly with various cloud platforms such as AWS , Microsoft Azure , and Google Cloud . This ensures that security policies are consistently applied in both on-premises and cloud environments, enabling a secure hybrid or multi-cloud setup. Operational Efficiency : AlgoSec’s automation capabilities reduce manual tasks, improving operational efficiency. This is essential during the migration process, where time is often of the essence. Real-time Visibility and Control : AlgoSec provides real-time visibility and control over your security policies, allowing you to adapt quickly to changing migration requirements and security threats. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call
- Business-driven Security Management For The Federal Governments - AlgoSec
Business-driven Security Management For The Federal Governments Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue
- The firewall audit checklist: Six best practices for simplifying firewall compliance and risk mitigation - AlgoSec
The firewall audit checklist: Six best practices for simplifying firewall compliance and risk mitigation Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue


