top of page

Search results

700 results found with an empty search

  • AlgoSec | Sunburst Backdoor, Part II: DGA & The List of Victims

    Previous Part of the analysis is available here. Next Part of the analysis is available here. Update from 19 December 2020: ‍Prevasio... Cloud Security Sunburst Backdoor, Part II: DGA & The List of Victims Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/17/20 Published Previous Part of the analysis is available here . Next Part of the analysis is available here . Update from 19 December 2020: Prevasio would like to thank Zetalytics for providing us with an updated (larger) list of passive (historic) DNS queries for the domains generated by the malware. As described in the first part of our analysis, the DGA (Domain Generation Algorithm) of the Sunburst backdoor produces a domain name that may look like: fivu4vjamve5vfrtn2huov[.]appsync-api.us-west-2[.]avsvmcloud[.]com The first part of the domain name (before the first dot) consists of a 16-character random string, appended with an encoded computer’s domain name. This is the domain in which the local computer is registered. From the example string above, we can conclude that the encoded computer’s domain starts from the 17th character and up until the dot (highlighted in yellow): fivu4vjamve5vfrt n2huov In order to encode a local computer’s domain name, the malware uses one of 2 simple methods: Method 1 : a substitution table, if the domain name consists of small letters, digits, or special characters ‘-‘, ‘_’, ‘.’ Method 2 : base64 with a custom alphabet, in case of capital letters present in the domain name Method 1 In our example, the encoded domain name is “n2huov” . As it does not have any capital letters, the malware encodes it with a substitution table “rq3gsalt6u1iyfzop572d49bnx8cvmkewhj” . For each character in the domain name, the encoder replaces it with a character located in the substitution table four characters right from the original character. In order to decode the name back, all we have to do is to replace each encoded character with another character, located in the substitution table four characters left from the original character. To illustrate this method, imagine that the original substitution table is printed on a paper strip and then covered with a card with 6 perforated windows. Above each window, there is a sticker note with a number on it, to reflect the order of characters in the word “n2huov” , where ‘n’ is #1, ‘2’ is #2, ‘h’ is #3 and so on: Once the paper strip is pulled by 4 characters right, the perforated windows will reveal a different word underneath the card: “domain” , where ‘d’ is #1, ‘o’ is #2, ‘m’ is #3, etc.: A special case is reserved for such characters as ‘0’ , ‘-‘ , ‘_’ , ‘.’ . These characters are encoded with ‘0’ , followed with a character from the substitution table. An index of that character in the substitution table, divided by 4, provides an index within the string “0_-.” . The following snippet in C# illustrates how an encoded string can be decoded: static string decode_domain( string s) { string table = "rq3gsalt6u1iyfzop572d49bnx8cvmkewhj" ; string result = "" ; for ( int i = 0 ; i < s.Length; i++) { if (s[i] != '0' ) { result += table[(table.IndexOf(s[i]) + table.Length - 4 ) % table.Length]; } else { if (i < s.Length - 1 ) { if (table.Contains(s[i + 1 ])) { result += "0_-." [table.IndexOf(s[i + 1 ]) % 4 ]; } else { break ; } } i++; } } return result; } Method 2 This method is a standard base64 encoder with a custom alphabet “ph2eifo3n5utg1j8d94qrvbmk0sal76c” . Here is a snippet in C# that provides a decoder: public static string FromBase32String( string str) { string table = "ph2eifo3n5utg1j8d94qrvbmk0sal76c" ; int numBytes = str.Length * 5 / 8 ; byte [] bytes = new Byte[numBytes]; int bit_buffer; int currentCharIndex; int bits_in_buffer; if (str.Length < 3 ) { bytes[ 0 ] = ( byte )(table.IndexOf(str[ 0 ]) | table.IndexOf(str[ 1 ]) << 5 ); return System.Text.Encoding.UTF8.GetString(bytes); } bit_buffer = (table.IndexOf(str[ 0 ]) | table.IndexOf(str[ 1 ]) << 5 ); bits_in_buffer = 10 ; currentCharIndex = 2 ; for ( int i = 0 ; i < bytes.Length; i++) { bytes[i] = ( byte )bit_buffer; bit_buffer >>= 8 ; bits_in_buffer -= 8 ; while (bits_in_buffer < 8 && currentCharIndex < str.Length) { bit_buffer |= table.IndexOf(str[currentCharIndex++]) << bits_in_buffer; bits_in_buffer += 5 ; } } return System.Text.Encoding.UTF8.GetString(bytes); } When the malware encodes a domain using Method 2, it prepends the encrypted string with a double zero character: “00” . Following that, extracting a domain part of an encoded domain name (long form) is as simple as: static string get_domain_part( string s) { int i = s.IndexOf( ".appsync-api" ); if (i > 0 ) { s = s.Substring( 0 , i); if (s.Length > 16 ) { return s.Substring( 16 ); } } return "" ; } Once the domain part is extracted, the decoded domain name can be obtained by using Method 1 or Method 2, as explained above: if (domain.StartsWith( "00" )) { decoded = FromBase32String(domain.Substring( 2 )); } else { decoded = decode_domain(domain); } Decrypting the Victims’ Domain Names To see the decoder in action, let’s select 2 lists: List #1 Bambenek Consulting has provided a list of observed hostnames for the DGA domain. List #2 The second list has surfaced in a Paste bin paste , allegedly sourced from Zetalytics / Zonecruncher . NOTE: This list is fairly ‘noisy’, as it has non-decodable domain names. By feeding both lists to our decoder, we can now obtain a list of decoded domains, that could have been generated by the victims of the Sunburst backdoor. DISCLAIMER: It is not clear if the provided lists contain valid domain names that indeed belong to the victims. It is quite possible that the encoded domain names were produced by third-party tools, sandboxes, or by researchers that investigated and analysed the backdoor. The decoded domain names are provided purely as a reverse engineering exercise. The resulting list was manually processed to eliminate noise, and to exclude duplicate entries. Following that, we have made an attempt to map the obtained domain names to the company names, using Google search. Reader’s discretion is advised as such mappings could be inaccurate. Decoded Domain Mapping (Could Be Inaccurate) hgvc.com Hilton Grand Vacations Amerisaf AMERISAFE, Inc. kcpl.com Kansas City Power and Light Company SFBALLET San Francisco Ballet scif.com State Compensation Insurance Fund LOGOSTEC Logostec Ventilação Industrial ARYZTA.C ARYZTA Food Solutions bmrn.com BioMarin Pharmaceutical Inc. AHCCCS.S Arizona Health Care Cost Containment System nnge.org Next Generation Global Education cree.com Cree, Inc (semiconductor products) calsb.org The State Bar of California rbe.sk.ca Regina Public Schools cisco.com Cisco Systems pcsco.com Professional Computer Systems barrie.ca City of Barrie ripta.com Rhode Island Public Transit Authority uncity.dk UN City (Building in Denmark) bisco.int Boambee Industrial Supplies (Bisco) haifa.edu University of Haifa smsnet.pl SMSNET, Poland fcmat.org Fiscal Crisis and Management Assistance Team wiley.com Wiley (publishing) ciena.com Ciena (networking systems) belkin.com Belkin spsd.sk.ca Saskatoon Public Schools pqcorp.com PQ Corporation ftfcu.corp First Tech Federal Credit Union bop.com.pk The Bank of Punjab nvidia.com NVidia insead.org INSEAD (non-profit, private university) usd373.org Newton Public Schools agloan.ads American AgCredit pageaz.gov City of Page jarvis.lab Erich Jarvis Lab ch2news.tv Channel 2 (Israeli TV channel) bgeltd.com Bradford / Hammacher Remote Support Software dsh.ca.gov California Department of State Hospitals dotcomm.org Douglas Omaha Technology Commission sc.pima.gov Arizona Superior Court in Pima County itps.uk.net IT Professional Services, UK moncton.loc City of Moncton acmedctr.ad Alameda Health System csci-va.com Computer Systems Center Incorporated keyano.local Keyano College uis.kent.edu Kent State University alm.brand.dk Sydbank Group (Banking, Denmark) ironform.com Ironform (metal fabrication) corp.ncr.com NCR Corporation ap.serco.com Serco Asia Pacific int.sap.corp SAP mmhs-fla.org Cleveland Clinic Martin Health nswhealth.net NSW Health mixonhill.com Mixon Hill (intelligent transportation systems) bcofsa.com.ar Banco de Formosa ci.dublin.ca. Dublin, City in California siskiyous.edu College of the Siskiyous weioffice.com Walton Family Foundation ecobank.group Ecobank Group (Africa) corp.sana.com Sana Biotechnology med.ds.osd.mi US Gov Information System wz.hasbro.com Hasbro (Toy company) its.iastate.ed Iowa State University amr.corp.intel Intel cds.capilanou. Capilano University e-idsolutions. IDSolutions (video conferencing) helixwater.org Helix Water District detmir-group.r Detsky Mir (Russian children’s retailer) int.lukoil-int LUKOIL (Oil and gas company, Russia) ad.azarthritis Arizona Arthritis and Rheumatology Associates net.vestfor.dk Vestforbrænding allegronet.co. Allegronet (Cloud based services, Israel) us.deloitte.co Deloitte central.pima.g Pima County Government city.kingston. City of Kingston staff.technion Technion – Israel Institute of Technology airquality.org Sacramento Metropolitan Air Quality Management District phabahamas.org Public Hospitals Authority, Caribbean parametrix.com Parametrix (Engineering) ad.checkpoint. Check Point corp.riotinto. Rio Tinto (Mining company, Australia) intra.rakuten. Rakuten us.rwbaird.com Robert W. Baird & Co. (Financial services) ville.terrebonn Ville de Terrebonne woodruff-sawyer Woodruff-Sawyer & Co., Inc. fisherbartoninc Fisher Barton Group banccentral.com BancCentral Financial Services Corp. taylorfarms.com Taylor Fresh Foods neophotonics.co NeoPhotonics (optoelectronic devices) gloucesterva.ne Gloucester County magnoliaisd.loc Magnolia Independent School District zippertubing.co Zippertubing (Manufacturing) milledgeville.l Milledgeville (City in Georgia) digitalreachinc Digital Reach, Inc. deniz.denizbank DenizBank thoughtspot.int ThoughtSpot (Business intelligence) lufkintexas.net Lufkin (City in Texas) digitalsense.co Digital Sense (Cloud Services) wrbaustralia.ad W. R. Berkley Insurance Australia christieclinic. Christie Clinic Telehealth signaturebank.l Signature Bank dufferincounty. Dufferin County mountsinai.hosp Mount Sinai Hospital securview.local Securview Victory (Video Interface technology) weber-kunststof Weber Kunststoftechniek parentpay.local ParentPay (Cashless Payments) europapier.inte Europapier International AG molsoncoors.com Molson Coors Beverage Company fujitsugeneral. Fujitsu General cityofsacramento City of Sacramento ninewellshospita Ninewells Hospital fortsmithlibrary Fort Smith Public Library dokkenengineerin Dokken Engineering vantagedatacente Vantage Data Centers friendshipstateb Friendship State Bank clinicasierravis Clinica Sierra Vista ftsillapachecasi Apache Casino Hotel voceracommunicat Vocera (clinical communications) mutualofomahabanMutual of Omaha Bank Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | 12 Best Network Security Audit Tools + Key Features

    Fortified network security requires getting a variety of systems and platforms to work together. Security teams need to scan for... Firewall Policy Management 12 Best Network Security Audit Tools + Key Features Asher Benbenisty 2 min read Asher Benbenisty Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 10/25/23 Published Fortified network security requires getting a variety of systems and platforms to work together. Security teams need to scan for potential threats, look for new vulnerabilities in the network, and install software patches in order to keep these different parts working smoothly. While small organizations with dedicated cybersecurity teams may process these tasks manually at first, growing audit demands will quickly outpace their capabilities. Growing organizations and enterprises rely on automation to improve IT security auditing and make sure their tech stack is optimized to keep hackers out. Network Security Audit Tools Explained Network Security Audit Tools provide at-a-glance visibility into network security operations and infrastructure. They scan network security tools throughout the environment and alert administrators of situations that require their attention. These situations can be anything from emerging threats, newly discovered vulnerabilities, or newly released patches for important applications. Your network security audit tools provide a centralized solution for managing the effectiveness of your entire security tech stack – including cloud-based software solutions and on-premises tools alike. With such a wide set of responsibilities, it should come as no surprise that many audit tools differ widely from one another. Some are designed for easy patch management while others may focus on intrusion detection or sensitive data exfiltration. Major platforms and operating systems may even include their own built-in audit tools. Microsoft Windows has an audit tool that focuses exclusively on Active Directory. However, enterprise security teams don’t want to clutter their processes with overlapping tools and interfaces – they want to consolidate their auditing tools onto platforms that allow for easy management and oversight. Types of Network Security Audit Tools Firewall Auditing Tools Firewall security rules provide clear instructions to firewalls on what kind of traffic is permitted to pass through. Firewalls can only inspect connections they are configured to detect . These rules are not static , however. Since the cybersecurity threat landscape is constantly changing, firewall administrators must regularly update their policies to accommodate new types of threats. At the same time, threat actors who infiltrate firewall management solutions can gain a critical advantage over their targets. They can change the organization’s security policies to ignore whatever malicious traffic they are planning on using to compromise the network. If these changes go unnoticed, even the best security technologies won’t be able to detect or respond to the threat. Security teams must regularly evaluate their firewall security policies to make sure they are optimized for the organization’s current risk profile. This means assessing the organization’s firewall rules and determining whether it is meeting its security needs. The auditing process may reveal overlapping rules, unexpected configuration changes , or other issues. Vulnerability Scanners Vulnerability scanners are automated tools that create an inventory of all IT assets in the organization and scan those assets for weak points that attackers may exploit. They also gather operational details of those assets and use that information to create a comprehensive map of the network and its security risk profile. Even a small organization may have thousands of assets. Hardware desktop workstations, laptop computers, servers, physical firewalls, and printers all require vulnerability scanning. Software assets like applications , containers, virtual machines, and host-based firewalls must also be scanned. Large enterprises need scanning solutions capable of handling enormous workloads rapidly. These tools provide security teams with three key pieces of information: Weaknesses that hackers know how to exploit . Vulnerability scanners work based on known threats that attackers have exploited in the past. They show security teams exactly where hackers could strike, and how. The degree of risk associated with each weakness . Since scanners have comprehensive information about every asset in the network, they can also predict the damage that might stem from an attack. This allows security teams to focus on high-priority risks first. Recommendations on how to address each weakness . The best vulnerability scanners provide detailed reports with in-depth information on how to mitigate potential threats. This gives security personnel step-by-step information on how to improve the organization’s security posture. Penetration Testing Tools Penetration testing allows organizations to find out how resilient their assets and processes might be in the face of an active cyberattack. Penetration testers use the same tools and techniques hackers use to exploit their victims, showing organizations whether their security policies actually work. Traditionally, penetration testing is carried out by two teams of cybersecurity professionals. The “red team” attempts to infiltrate the network and access sensitive data while the “blue team” takes on defense. Cybersecurity professionals should know how to use the penetration testing tools employed by hackers and red team operatives. Most of these tools have legitimate uses and are a fixture of many IT professionals’ toolkits. Some examples include: Port scanners . These identify open ports on a particular system. This can help users identify the operating system and find out what applications are running on the network. Vulnerability scanners . These search for known vulnerabilities in applications, operating systems, and servers. Vulnerability reports help penetration testers identify the most reliable entry point into a protected network. Network analyzers . Also called network sniffers, these tools monitor the data traveling through the network. They can provide penetration testers with information about who is communicating over the network, and what protocols and ports they are using. These tools help security professionals run security audits by providing in-depth data on how specific attack attempts might play out. Additional tools like web proxies and password crackers can also play a role in penetration testing, providing insight into the organization’s resilience against known threats. Key Functionalities of Network Security Audit Software Comprehensive network security audit solutions should include the following features: Real-time Vulnerability Assessment Network Discovery and Assessment Network Scanning for Devices and IP Addresses Identifying Network Vulnerabilities Detecting Misconfigurations and Weaknesses Risk Management Customizable Firewall Audit Templates Endpoint Security Auditing Assessing Endpoint Security Posture User Account Permissions and Data Security Identifying Malware and Security Threats Compliance Auditing Generating Compliance Audit Reports Compliance Standards and Regulations PCI DSS HIPAA GDPR NIST Integration and Automation with IT Infrastructure Notifications and Remediation User Interface and Ease of Use Operating System and Configuration Auditing Auditing Windows and Linux Systems User Permissions and Access Control Top 12 Network Security Audit Tools 1. AlgoSec AlgoSec simplifies firewall audits and allows organizations to continuously monitor their security posture against known threats and risks. It automatically identifies compliance gaps and other issues that can get in the way of optimal security performance, providing security teams with a single, consolidated view into their network security risk profile. 2. Palo Alto Networks Palo Alto Networks offers two types of network security audit solutions to its customers: The Prevention Posture Assessment is a questionnaire that helps Palo Alto customers identify security risks and close security gaps. The process is guided by a Palo Alto Networks sales engineer, who reviews your answers and identifies the areas of greatest risk within your organization. The Best Practice Assessment Tool is an automated solution for evaluating next-generation firewall rules according to Palo Alto Networks established best practices. It inspects and validates firewall rules and tells users how to improve their policies. 3. Check Point Check Point Software provides customers with a tool that monitors security security infrastructure and automates configuration optimization. It allows administrators to monitor policy changes in real-time and translate complex regulatory requirements into actionable practices. This reduces the risk of human error while allowing large enterprises to demonstrate compliance easily. The company also provides a variety of audits and assessments to its customers. These range from free remote self-test services to expert-led security assessments. 4. ManageEngine ManageEngine provides users with a network configuration manager with built-in reporting capabilities and automation. It assesses the network for assets and delivers detailed reports on bandwidth consumption, users and access levels, security configurations, and more. ManageEngine is designed to reduce the need for manual documentation, allowing administrators to make changes to their networks without having to painstakingly consult technical manuals first. Administrators can improve the decision-making process by scheduling ManageEngine reports at regular intervals and acting on its suggestions. 5. Tufin Tufin provides organizations with continuous compliance and audit tools designed for hybrid networks. It supports a wide range of compliance regulations, and can be customized for organization-specific use cases. Security administrators use Tufin to gain end-to-end visibility into their IT infrastructure and automate policy management. Tufin offers multiple network security audit tool tiers, starting from a simple centralized policy management tool to an enterprise-wide zero-touch automation platform. 6. SolarWinds SolarWinds is a popular tool for tracking configuration changes and generating compliance reports. It allows IT administrators to centralize device tracking and usage reviews across the network. Administrators can monitor configurations, make changes, and load backups from the SolarWinds dashboard. As a network security audit tool, SolarWinds highlights inconsistent configuration changes and non-compliant devices it finds on the network. This allows security professionals to quickly identify problems that need immediate attention. 7. FireMon FireMon Security Manager is a consolidated rule management solution for firewalls and cloud security groups. It is designed to simplify the process of managing complex rules on growing enterprise networks. Cutting down on misconfigurations mitigates some of the risks associated with data breaches and compliance violations. FireMon provides users with solutions to reduce risk, manage change, and enforce compliance. It features a real-time inventory of network assets and the rules that apply to them. 8. Nessus Tenable is renowned for the capabilities of its Nessus vulnerability scanning tool. It provides in-depth insights into network weaknesses and offers remediation guidance. Nessus is widely used by organizations to identify and address vulnerabilities in their systems and networks. Nessus provides security teams with unlimited IT vulnerability assessments, as well as configuration and compliance audits. It generates custom reports and can scan cloud infrastructure for vulnerabilities in real-time. 9. Wireshark Wireshark is a powerful network protocol analyzer. It allows you to capture and inspect data packets, making it invaluable for diagnosing network issues. It does not offer advanced automation or other features, however. WireShark is designed to give security professionals insight into specific issues that may impact traffic flows on networks. Wireshark is an open-source tool that is highly regarded throughout the security industry. It is one of the first industry-specific tools most cybersecurity professionals start using when obtaining certification. 10. Nmap (Network Mapper) Nmap is another open-source tool used for network discovery and security auditing. It excels in mapping network topology and identifying open ports. Like WireShark, it’s a widespread tool often encountered in cybersecurity certification courses. Nmap is known for its flexibility and is a favorite among network administrators and security professionals. It does not offer advanced automation on its own, but it can be automated using additional modules. 11. OpenVAS (Open Vulnerability Assessment System) OpenVAS is an open-source vulnerability scanner known for its comprehensive security assessments. It is part of a wider framework called Greenbone Vulnerability Management, which includes a selection of auditing tools offered under GPL licensing. That means anyone can access, use, and customize the tool. OpenVAS is well-suited to organizations that want to customize their vulnerability scanning assessments. It is particularly well-suited to environments that require integration with other security tools. 12. SkyBox Security Skybox helps organizations strengthen their security policies and reduce their exposure to risk. It features cloud-enabled security posture management and support for a wide range of third-party integrations. Skybox allows security teams to accomplish complex and time-consuming cybersecurity initiatives faster and with greater success. It does this by supporting security policy lifecycle management, providing audit and compliance automation, and identifying vulnerabilities in real-time. Steps to Conduct a Network Security Audit Define the Scope : Start by defining the scope of your audit. You’ll need to determine which parts of your network and systems will be audited. Consider the goals and objectives of the audit, such as identifying vulnerabilities, ensuring compliance, or assessing overall security posture. Gather Information : Collect all relevant information about your network, including network diagrams, asset inventories, and existing security policies and procedures. This information will serve as a baseline for your audit. The more comprehensive this information is, the more accurate your audit results can be. Identify Assets : List all the assets on your network, including servers, routers, switches, firewalls, and endpoints. Ensure that you have a complete inventory of all devices and their configurations. If this information is not accurate, the audit may overlook important gaps in your security posture. Assess Vulnerabilities : Use network vulnerability scanning tools to identify vulnerabilities in your network. Vulnerability scanners like Nessus or OpenVAS can help pinpoint weaknesses in software, configurations, or missing patches. This process may take a long time if it’s not supported by automation. Penetration Testing : Conduct penetration testing to simulate cyberattacks and assess how well your network defenses hold up. Penetration testing tools like Metasploit or Burp Suite can help identify potential security gaps. Automation can help here, too – but the best penetration testing services emulate the way hackers work in the real world. Review Policies and Procedures : Evaluate the results of your vulnerability and penetration testing initiatives. Review your existing security policies and procedures to ensure they align with best practices and compliance requirements. Make necessary updates or improvements based on audit findings. Log Analysis : Analyze network logs to detect any suspicious or unauthorized activities. Log analysis tools like Splunk or ELK Stack can help by automating the process of converting log data into meaningful insights. Organizations equipped with SIEM platforms can analyze logs in near real-time and continuously monitor their networks for signs of unauthorized behavior. Review Access Controls : Ensure the organization’s access control policies are optimal. Review user permissions and authentication methods to prevent unauthorized access to critical resources. Look for policies and rules that drag down production by locking legitimate users out of files and folders they need to access. Firewall and Router Configuration Review: Examine firewall and router configurations to verify that they are correctly implemented and that access rules are up to date. Ensure that only necessary ports are open, and that the organization’s firewalls are configured to protect those ports. Prevent hackers from using port scanners or other tools to conduct reconnaissance. Patch Management : Check for missing patches and updates on all network devices and systems. Regularly update and patch software to address known vulnerabilities. Review recently patched systems to make sure they are still compatible with the tools and technologies they integrate with. Incident Response Plan : Review and update your incident response plan. Ensure the organization is prepared to respond effectively to security incidents, and can rely on up-to-date playbooks in the event of a breach. Compare incident response plans with the latest vulnerability scanning data and emerging threat intelligence information. Documentation and Reporting: Document all audit findings, vulnerabilities, and recommended remediation steps. Generate data visualizations that guide executives and other stakeholders through the security audit process and explain its results. Create a comprehensive report that includes an executive summary, technical details, and prioritized action items. Remediation : Implement the necessary changes and remediation measures to address the identified vulnerabilities and weaknesses. Deploy limited security resources effectively, prioritizing fixes based on their severity. Avoid unnecessary downtime when reconfiguring security tools and mitigating risk. Follow-Up Audits: Schedule regular follow-up audits to ensure that the identified vulnerabilities have been addressed and that security measures are continuously improved. Compare the performance metric data gathered through multiple audits and look for patterns emerging over time. Training and Awareness: Provide training and awareness programs for employees to enhance their understanding of security best practices and their role in maintaining network security. Keep employees well-informed about the latest threats and vulnerabilities they must look out for. FAQs What are some general best practices for network security auditing? Network security audits should take a close look at how the organization handles network configuration management over time. Instead of focusing only on how the organization’s current security controls are performing, analysts should look for patterns that predict how the organization will perform when new threats emerge in the near future. This might mean implementing real-time monitoring and measuring how long it takes for obsolete rules to get replaced. What is the ideal frequency for conducting network security audits? Network security audits should be conducted at least annually, with more frequent audits recommended for organizations with high-security requirements. Automated policy management platforms like AlgoSec can help organizations audit their security controls continuously. Are network security audit tools effective against zero-day vulnerabilities? Network security audit tools may not detect zero-day vulnerabilities immediately. However, they can still contribute by identifying other weaknesses that could be exploited in tandem with a zero-day vulnerability. They also provide information on how long it takes the organization to recognize new vulnerabilities once they are discovered. What should I look for when choosing a network security audit tool for my organization? Consider factors like the tool’s compatibility with your network infrastructure, reporting capabilities, support and updates, and its track record in identifying vulnerabilities relevant to your industry. Large enterprises highly value scalable tools that support automation. Can network security audit tools help with regulatory compliance? Yes, many audit tools offer compliance reporting features, helping organizations adhere to various industry and government regulations. Without an automated network security audit tool in place, many organizations would be unable to consistently demonstrate compliance. How long does it take to conduct a typical network security audit? The duration of an audit varies depending on the size and complexity of the network. A thorough audit can take anywhere from a few days to several weeks. Continuous auditing eliminates the need to disrupt daily operations when conducting audits, allowing security teams to constantly improve performance. What are the most common mistakes organizations make during network security audits? Common mistakes include neglecting to update audit tools regularly, failing to prioritize identified vulnerabilities, and not involving key stakeholders in the audit process. Overlooking critical assets like third-party user accounts can also lead to inaccurate audit results. What are some important capabilities needed for a Cloud-Based Security Audit? Cloud-based security audits can quickly generate valuable results by scanning the organization’s cloud-hosted IT assets for vulnerabilities and compliance violations. However, cloud-based audit software must be able to recognize and integrate third-party SaaS vendors and their infrastructure. Third-party tools and platforms can present serious security risks, and must be carefully inspected during the audit process. What is the role of Managed Service Providers (MSPs) in Network Security Auditing? MSPs can use audits to demonstrate the value of their services and show customers where improvement is needed. Since this improvement often involves the customer drawing additional resources from the MSP, comprehensive audits can improve the profitability of managed service contracts and deepen the connection between MSPs and their customers. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Router Honeypot for an IRC Bot

    In our previous post we have provided some details about a new fork of Kinsing malware, a Linux malware that propagates across... Cloud Security Router Honeypot for an IRC Bot Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. glibc_2 Tags Share this article 9/13/20 Published In our previous post we have provided some details about a new fork of Kinsing malware, a Linux malware that propagates across misconfigured Docker platforms and compromises them with a coinminer. Several days ago, the attackers behind this malware have uploaded a new ELF executable b_armv7l into the compromised server dockerupdate[.]anondns[.]net . The executable b_armv7l is based on a known source of Tsunami (also known as Kaiten), and is built using uClibc toolchain: $ file b_armv7l b_armv7l: ELF 32-bit LSB executable, ARM, EABI4 version 1 (SYSV), dynamically linked, interpreter /lib/ld-uClibc.so.0, with debug_info, not stripped Unlike glibc , the C library normally used with Linux distributions, uClibc is smaller and is designed for embedded Linux systems, such as IoT. Therefore, the malicious b_armv7l was built with a clear intention to install it on such devices as routers, firewalls, gateways, network cameras, NAS servers, etc. Some of the binary’s strings are encrypted. With the help of the HexRays decompiler , one could clearly see how they are decrypted: memcpy ( &key, "xm@_;w,B-Z*j?nvE|sq1o$3\"7zKC4ihgfe6cba~&5Dk2d!8+9Uy:" , 0x40u ) ; memcpy ( &alphabet, "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ. " , 0x40u ) ; for ( i = 0; i < = 64; ++i ){ if ( encoded [ j ] == key [ i ]) { if ( psw_or_srv ) decodedpsw [ k ] = alphabet [ i ] ; else decodedsrv [ k ] = alphabet [ i ] ; ++k; }} The string decryption routine is trivial — it simply replaces each encrypted string’s character found in the array key with a character at the same position, located in the array alphabet. Using this trick, the critical strings can be decrypted as: Variable Name Encoded String Decoded String decodedpsw $7|3vfaa~8 logmeINNOW decodedsrv $7?*$s7

  • AlgoSec | Are VLANs secure? VLAN security best practices

    Virtual Local Area Network (VLAN) Security Issues You’re in no doubt familiar with Virtual Local Area Network (VLAN) technology and its... Information Security Are VLANs secure? VLAN security best practices Kevin Beaver 2 min read Kevin Beaver Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 9/23/14 Published Virtual Local Area Network (VLAN) Security Issues You’re in no doubt familiar with Virtual Local Area Network (VLAN) technology and its ability to segment traffic within your network. It’s one of those decades-old technologies that businesses have come to rely on to reduce costs, minimize network broadcast domains, and protect certain systems from others. It sounds good on paper but it’s rare to see a VLAN environment that’s truly configured in the right way in order to realize its intended benefits. For example, I’ve seen some networks segmented by physical switches rather than using logical VLANs configured within each managed switch. This means that anyone on the same physical switch/broadcast domain can see every host on that segment. And if they want to see all traffic, it’s often just a matter of using Cain & Abel’s ARP Poison Routing feature . This is not an effective way to manage network devices and there’s no way to prevent inadvertent connections to the wrong segment during network upgrades, troubleshooting, and the like. It becomes a jumbled mess that negates any perceived switching or VLAN benefits. Furthermore, many “virtual” networks allow anyone to hop between segments if they know the IP addressing scheme. For example, say a user is on the 10.10.10.x network and he wants to get onto the production network of 10.0.0.x. No problem… he just points his Web browser, his vulnerability scanner, or whatever to 10.0.0.x and he’s good to go. Worst case, he might have to configure his system with a static IP address on that network, but that’s simple enough to do. This configuration may be considered a “VLAN” that’s managing broadcast traffic but there are no real ACLs, firewall rules, or packet tagging to prevent unauthorized access by internal attackers, malware, and the like. The network is basically flat with no policies and little to no security between any of the network segments and systems. Another thing to remember is that many VLANs are used to partition networks into distinctive segments to separate business units and their unique data sets. Even if the technical aspects of the VLAN configuration are spot on, these environments are often defined at a very high level without involving the actual business unit managers or information owners, therefore there are often security gaps in the segmentation. This means that information specific to a business unit and believed to be isolated is often anything but – it may well be scattered across numerous other VLANs and network hosts within those segments. How does this happen? Convenience and mobility and general carelessness. Users copy information to places where they can work on it and end up copying it to systems outside of the intended VLAN domain or to different hosts on other VLANs. IT may even copy information for backup or test purposes. Either way, confidential information often ends up on unprotected “islands” that no one knows about until it’s too late. Network security based on VLAN technology can work if it’s done properly. And while it’s not perfect, it can add another layer of security to your environment, one that can make the difference between breach and no breach. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Cybersecurity predictions and best practices in 2022

    While we optimistically hoped for normality in 2021, organizations continue to deal with the repercussions of the pandemic nearly two... Risk Management and Vulnerabilities Cybersecurity predictions and best practices in 2022 Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/8/22 Published While we optimistically hoped for normality in 2021, organizations continue to deal with the repercussions of the pandemic nearly two years on. Once considered temporary measures to ride out the lockdown restrictions, they have become permanent fixtures now, creating a dynamic shift in cybersecurity and networking. At the same time, cybercriminals have taken advantage of the distraction by launching ambitious attacks against critical infrastructure. As we continue to deal with the pandemic effect, what can we expect to see in 2022? Here are my thoughts on some of the most talked about topics in cybersecurity and network management. Taking an application-centric approach One thing I have been calling attention to for several years now has been the need to focus on applications when dealing with network security. Even when identifying a single connection, you have a very limited view of the “hidden story” behind it, which means first and foremost, you need a clear cut answer to the following: What is actually going on with this application? You also need the broader context to understand the intent behind it: Why is the connection there? What purpose does it serve? What applications is it supporting? These questions are bound to come up in all sorts of use cases. For instance, when auditing the scope of an application, you may ask yourself the following: Is it secure? Is it aligned? Does it have risks? In today’s network organization chart, application owners need to own the risk of their application; the problem is no longer the domain of the networking team. Understanding intent can present quite a challenge. This is particularly the case in brownfield situations, where hundreds of applications are running across the environment and historically poor record keeping. Despite the difficulties, it still needs to be done now and in the future. Heightening ransomware preparedness We’ve continued to witness more ransomware attacks running rampant in organizations across the board, wreaking havoc on their security networks. Technology, food production and critical infrastructure firms were hit with nearly $320 million of ransom attacks in 2021, including the largest publicly known demand to date. Bad actors behind the attacks are making millions, while businesses struggle to recover from a breach. As we enter 2022, it is safe to expect that a curbing of this trend is unlikely to occur. So, if it’s not a question of “will a ransomware attack occur,” it begs the question of “how does your organization prepare for this eventuality?” Preparation is crucial, but antivirus software will only get you so far. Once an attacker has infiltrated the network, you need to mitigate the impact. To that end, as part of your overall network security strategy, I highly recommend Micro-segmentation, a proven best practice to reduce the attack surface and ensure that a network is not relegated to one linear thread, safeguarding against full-scale outages. Employees also need to know what to do when the network is under attack. They need to study, understand the corporate playbook and take action immediately. It’s also important to consider the form and frequency of back-ups and ensure they are offline and inaccessible to hackers. This is an issue that should be addressed in security budgets for 2022. Smart migration to the cloud Migrating to the cloud has historically been reserved for advanced industries. Still, increasingly we are seeing the most conservative vertical sectors, from finance to government, adopt a hybrid or full cloud model. In fact, Gartner forecasts that end-user spending on public cloud services will reach $482 billion in 2022. However, the move to the cloud does not necessarily mean that traditional data centers are being eliminated. Large institutions have invested heavily over the years in on-premise servers and will be reluctant to remove them entirely. That is why many organizations are moving to a hybrid environment where certain applications remain on-premise, and newly adopted services are predominantly transitioning to cloud-based software. We are now seeing more hybrid environments where organizations have a substantial and growing cloud estate and a significant on-premise data center. All this means that with the presence of the old historical software and the introduction of the new cloud-based software, security has become more complicated. And since these systems need to coexist, it is imperative to ensure that they communicate with each other. As a security professional, it is incumbent upon you to be mindful of that; it is your responsibility to secure the whole estate, whether on-premise, in the cloud, or in some transition state. Adopting a holistic view of network security management More frequently than not, I am seeing the need for holistic management of network objects and IP addresses. Organizations are experiencing situations where they manage their IP address usage using IPAM systems and CMDBs to manage assets. Unfortunately, these are siloed systems that rarely communicate with each other. The consumers of these types of information systems are often security controls such as firewalls, SDN filters, etc. Since each vendor has its own way of doing these things, you get disparate systems, inefficiencies, contradictions, and duplicate names across systems. These misalignments cause security problems that lead to miscommunication between people. The good news is that there are systems on the market that align these disparate silos of information into one holistic view, which organizations will likely explore over the next twelve months. Adjusting network security to Work from Home demands The pandemic and its subsequent lockdowns forced many employees to work from remote locations. This shift has continued for the last two years and is likely to remain part of the new normal, either in full or partial capacity. According to Reuters, decision-makers plan to move a third of their workforce to telework in the long term. That figure has doubled compared to the pre COVID period and subsequently, the cybersecurity implications of this increase have become paramount. As more people work on their own devices and need to connect to their organization’s network, one that is secure and provides adequate bandwidth, it also requires new technologies to be deployed. As a result, this has led to the SASE (Secure Access Security Edge) model, where security is delivered over the cloud- much closer to the end user. Since the new way of working appears to be here to stay in one shape or another, organizations will need to invest in the right tooling to allow security professionals to set policies, gain visibility for adequate reporting and control hybrid networks. The Takeaway If there’s anything we’ve learned from the past two years is that we cannot confidently predict the perils looming around the corner. However, there are things that we can and should be able to anticipate that can help you avoid any unnecessary risk to your security networks, whether today or in the future. To learn how your organization can be better equipped to deal with these challenges, click here to schedule a demo today. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Unveiling the Cloud's Hidden Risks: How to Gain Control of Your Cloud Environment 

    In today's rapidly evolving digital landscape, the cloud has become an indispensable tool for businesses seeking agility and scalability.... Cloud Security Unveiling the Cloud's Hidden Risks: How to Gain Control of Your Cloud Environment Asher Benbenisty 2 min read Asher Benbenisty Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/4/24 Published In today's rapidly evolving digital landscape, the cloud has become an indispensable tool for businesses seeking agility and scalability. However, this migration also brings a new set of challenges, particularly when it comes to security. The increasing complexity and sophistication of cyber threats demand a proactive and comprehensive approach to safeguarding your cloud environments. At AlgoSec, we understand these challenges firsthand. We recognize that navigating the cloud security maze can be daunting, and we're here to guide you through it. Drawing on our extensive real-world experience, we've curated a series of blog articles designed to equip you with practical advice and actionable insights to bolster your cloud security posture. From the fundamentals of VPC security to advanced Security as Code practices, we'll delve into the strategies and best practices that will empower you to protect your valuable assets in the cloud. Join us on this journey as we explore the ever-evolving world of cloud security together. Hey cloud crusaders! Let's face it, the cloud's the lifeblood of modern business, but it's also a bit of a wild west out there. Think of it as a bustling city with gleaming skyscrapers and hidden alleyways – full of opportunity, but also teeming with cyber-crooks just waiting to pounce. The bad news? Those cyber threats are getting sneakier and more sophisticated by the day. The good news? We're here to arm you with the knowledge and tools you need to fortify your cloud defenses and send those cyber-villains packing. Think of this blog series as your cloud security boot camp. We'll be your drill sergeants, sharing battle-tested strategies and practical tips to conquer the cloud security maze. From the basics of VPC security to the ninja arts of Security as Code, we've got you covered. So, buckle up, grab your virtual armor, and join us on this thrilling quest to conquer the cloud security challenge! The Cloud's Underbelly: Where the Dangers Hide The cloud has revolutionized business, but it's also opened up a whole new can of security worms. It's like building a magnificent castle in the sky, but forgetting to install the drawbridge and moat. Here's the deal: the faster you embrace the cloud, the harder it gets to keep an eye on everything. Think sprawling cloud environments with hidden corners and shadowy figures lurking in the depths. If you can't see what's going on, you're practically inviting those cyber-bandits to steal your precious data and leave you with a hefty ransom note. In this post, we're shining a light on those hidden dangers and giving you the tools to take back control of your cloud security. Get ready to become a cloud security ninja! Cloud Security Challenges: A Rogue's Gallery Cloud security is like a tangled web – complex, ever-changing, and full of surprises. Let's break down the top five reasons why securing your cloud can feel like a Herculean task. 1. Cloud Adoption on Steroids: Think of cloud adoption as a rocket launch – it's not a one-time event, but a continuous journey into the unknown. New resources are constantly being added, applications are migrating, and data is flowing like a raging river. Keeping track of everything and ensuring its security is like trying to herd cats in a hurricane. And hold on tight, because Gartner predicts that by 2027, global public cloud spending will blast past the $1 trillion mark! That's a whole lot of cloud to manage and secure. 2. Security's Unique Demands: The cloud's a shape-shifter, constantly changing and evolving. That means your attack surface is never static – it's more like a wriggling octopus with tentacles reaching everywhere. And if you're not careful, those tentacles can be riddled with vulnerabilities and misconfigurations, just waiting for a cyber-pirate to exploit them. Legacy security solutions? They're like trying to fight a dragon with a water pistol. They simply can't keep up with the cloud's dynamic nature, leaving you vulnerable to breaches, compliance failures, and a whole lot of financial pain. Figure 1: Gartner’s Top Cybersecurity Trends for 2024 (Source: Gartner ) 3. The Threat Landscape: A Cyber-Jungle The cyber threat landscape is a dangerous jungle, and your cloud environment is the prized watering hole. McKinsey estimates that by 2025, cyberattacks will cost businesses a staggering $10.5 trillion annually! That's enough to make even the bravest cloud warrior tremble. And as if the cloud's inherent challenges weren't enough, you've got a relentless horde of cyber-criminals trying to breach your defenses. Just look at some of the major attacks in 2024: AT&T : 110 million customer phone records compromised – that's like losing a phone book the size of a small city! Ticketmaster : 560 million customer records stolen – a hacking collective hit the jackpot with this one! Dell : 49 million customers' data compromised through brute-force attacks – talk about a battering ram! Figure 2: Stolen Ticketmaster data on illicit marketplaces (Source: Bleeping Computer ) 4. Regulatory Pressures: The Compliance Gauntlet Navigating the world of compliance is like running a gauntlet – one wrong step and you'll get hit with a penalty. Without a crystal-clear view of your cloud resources, networks, applications, and data, you're practically walking blindfolded through a minefield. Poor visibility, suboptimal network segmentation, and inconsistent rules are the enemies of compliance. They're like cracks in your cloud fortress, just waiting for an auditor to exploit them. To gain a deeper understanding of how to navigate these regulatory complexities and implement best practices for building effective cloud security, download our free white paper by clicking here. 5. Reputation on the Line: In today's cutthroat business world, your cloud expertise is your reputation. One major security disaster can send your customers running for the hills and leave your brand in tatters. Securing Your Cloud Kingdom: A Battle Plan So, how do you defend your cloud kingdom from these relentless threats? It's time to ditch those outdated security solutions and embrace a multi-layered, application-centric approach. Think of it as building a fortress with multiple walls, guard towers, and a crack team of archers ready to defend your precious assets. Here's your battle plan: Trim the Fat: Keep your attack surface lean and mean by constantly pruning unnecessary resources and applications. It's like trimming the hedges around your castle to eliminate hiding spots for those pesky intruders. Map Your Terrain: Get a bird's-eye view of your entire cloud landscape – public, private, hybrid, the whole shebang! Understand how everything connects and interacts, so you can identify and prioritize risks like a true cloud strategist. Banish Shadow IT: Don't let those rogue employees sneak in unauthorized applications and resources. Shine a light on shadow IT and bring it under your control before it becomes a backdoor for attackers. Protect Your Treasure: Exposed data is like leaving your crown jewels out in the open. Identify and secure your sensitive data with an iron grip. Hunt for Weaknesses: Continuously scan your cloud environment for vulnerabilities and misconfigurations. Even the smallest crack can be exploited by a determined attacker. Prioritize and address those weaknesses before they turn into a breach. Conquer Compliance: Compliance can be a beast, but it's a beast you can tame. Design and implement security policies and configurations that meet those regulatory demands. Remember, a secure cloud is a compliant cloud. Fortify Your Policies: Strong security policies are the guardians of your cloud kingdom. Automate their creation and enforcement to ensure consistency and compliance. And don't forget to keep a watchful eye on them! Unleash the Power of Application-Centric Security: Ditch those clunky, siloed security tools that bombard you with irrelevant alerts. Embrace a unified, application-centric solution that understands the importance of your applications and prioritizes risks accordingly. Building Effective Cloud Security Security: Free White Paper Looking for a comprehensive guide to building effective cloud security? Our white paper provides expert insights and actionable strategies to optimize your security posture. Choosing the Right Weapon: Your Cloud Security Solution To truly conquer the cloud security challenge, you need the right weapon in your arsenal. Here's what to look for in an application-centric cloud security solution: AI-Powered Application Discovery: Automatically discover, map, and analyze your cloud applications like a bloodhound on the trail. Tech Stack Integration: Seamlessly connect to your unique cloud environment, whether it's public, private, hybrid, or a multi-cloud extravaganza. Smart Security Policy Enforcement: Automate the creation, implementation, and management of your security policies across all your cloud assets. Reporting Powerhouse: Generate audit-ready reports with a single click, keeping those pesky auditors at bay. Streamlined Workflows: Say goodbye to clunky processes and hello to smooth, automated workflows that boost your team's efficiency. Prioritized Remediation: Focus on the most critical risks first with a prioritized remediation plan. It's like having a triage system for your cloud security. Integration Master: Integrate seamlessly with your existing security tools and platforms, creating a unified security ecosystem. Think of it as a superhero team-up for your cloud defenses. Don't Just Survive, Thrive! Securing your cloud isn't just about battening down the hatches and hoping for the best. It's about creating a secure foundation for growth, innovation, and cloud dominance. Think of it as building a fortress that's not only impenetrable but also allows you to launch your own expeditions and conquer new territories. Here's how a proactive, application-centric security approach can unleash your cloud potential: Accelerate Your Cloud Journey: Don't let security concerns slow you down. With the right tools and strategies, you can confidently migrate to the cloud, deploy new applications, and embrace innovation without fear. Boost Your Business Agility: The cloud is all about agility, but security can sometimes feel like a ball and chain. With an application-centric approach, you can achieve both – a secure environment that empowers you to adapt and respond to changing business needs at lightning speed. Unlock Innovation: Don't let security be a barrier to innovation. By embedding security into your development process and automating key tasks, you can free up your teams to focus on creating amazing applications and driving business value. Gain a Competitive Edge: In today's digital world, security is a key differentiator. By demonstrating a strong commitment to cloud security, you can build trust with your customers, attract top talent, and gain a competitive advantage. AlgoSec: Your Cloud Security Sidekick If you're looking for a cloud security solution that ticks all these boxes, look no further than AlgoSec! We're like the Robin to your Batman, the trusty sidekick that's always got your back. Our platform is packed with features to help you conquer the cloud security challenge: AI-powered application discovery and mapping Comprehensive security policy management Continuous compliance monitoring Risk assessment and remediation Seamless integration with your existing tools Ready to take charge of your cloud security and become a true cloud crusader? Take advantage of dynamic behavior analyses, static analyses of your cloud application configurations, 150 pre-defined network security risk checks, and nuanced risk assessments, as well as a myriad of tools in the AlgoSec Security Management Suite (ASMS) . Get a demo today to see how AlgoSec can help you know your cloud better and secure your application connectivity. Stay tuned for our upcoming articles, where we'll share valuable insights on VPC security, Security as Code implementation, Azure best practices, Kubernetes and cloud encryption. Let's work together to build a safer and more resilient cloud future. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | AlgoSec attains ISO 27001 Accreditation

    The certification demonstrates AlgoSec’s commitment to protecting its customers’ and partners’ data Data protection is a top priority for... Auditing and Compliance AlgoSec attains ISO 27001 Accreditation Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/27/20 Published The certification demonstrates AlgoSec’s commitment to protecting its customers’ and partners’ data Data protection is a top priority for AlgoSec, proven by the enhanced security management system we have put in place to protect our customers’ assets. This commitment has been recognized by the ISO, who has awarded AlgoSec the ISO/IEC 27001 certification . The ISO 27001 accreditation is a voluntary standard awarded to service providers who meet the criteria for data protection. It outlines the requirements for building, monitoring, and improving an information security management system (ISMS); a systematic approach to managing sensitive company information including people, processes and IT systems. The ISO 27001 standard is made up of ten detailed control categories detailing information security, security organization, personnel security, physical security, access control, continuity planning, and compliance. To achieve the ISO 27001 certification, organizations must demonstrate that they can protect and manage sensitive company and customer information and undergo an independent audit by an accredited agency. The benefits of working with an ISO 27001 supplier include: Risk management – Standards that govern who can access information. Information security – Standards that detail how data is handled and transmitted. Business continuity – In order to maintain compliance, an ISMS must be continuously tested and improved. Obtaining the ISO 27001 certification is a testament to our drive for excellence and offers reassurance to our customers that our security measures meet the criteria set out by a global defense standard. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Managing the switch – Making the move to Cisco Meraki

    Challenges with managing Cisco Meraki in a complex enterprise environment We have worked closely with Cisco for many years in large... Application Connectivity Management Managing the switch – Making the move to Cisco Meraki Jeremiah Cornelius 2 min read Jeremiah Cornelius Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/4/24 Published Challenges with managing Cisco Meraki in a complex enterprise environment We have worked closely with Cisco for many years in large complex environments and have developed integrations to support a variety of Cisco solutions for our joint customers. In recent years we have seen an increased interest in the use of Cisco Meraki devices by enterprises that are also AlgoSec customers. In this post, we will highlight some of the AlgoSec capabilities that can quickly add value for Meraki customers. Meeting the Enterprise The Cisco Meraki MX is a multifunctional security and SD-WAN enterprise appliance with a wide set of capabilities to address multiple use cases—from an all-in-one device. Organizations across all industries rely on the MX to deliver secure connectivity to hub locations or multi cloud environments. The MX is 100% cloud-managed, so installation and remote management are truly zero-touch, making it ideal for distributed branches, campuses, and data center locations. In our talks with AlgoSec customers and partner architects, it is evident that the benefits that originally made Meraki MX popular in commercial deployments were just as appealing to enterprises. Many enterprises are now faced with waves of expansion in employees working from home, and burgeoning demands for scalable remote access – along with increasing network demands by regional centers. The leader of one security team I spoke with put it very well, “We are deploying to 1,200 locations in four global regions, planned to be 1,500 by year’s end. The choice of Meraki is for us a ‘no-brainer.’ If you haven’t already, I know that you’re going to see this become a more popular option with many big operations.” Natural Companions – AlgoSec ASMS and Cisco Meraki-MX This is a natural situation to meet enhanced requirements with AlgoSec ASMS — reinforcing Meraki’s impressive capabilities and scale as a combined, enterprise-class solution. ASMS brings to the table traffic planning and visualization, rules optimization and management, and a solution to address enterprise-level requirements for policy reporting and compliance auditing. In AlgoSec, we’re proud of AlgoSec FireFlow’s ability to model the security-connected state of any given endpoints across an entire enterprise. Now our customers with Meraki MX can extend this technology that they know and trust, analyze real traffic in complex deployments, and acquire an understanding of the requirements and impact of changes delivered to their users and applications that are connected by Meraki deployments. As it’s unlikely that your needs, or those of any data center and enterprise, are met by a single vendor and model, AlgoSec unifies operations of the Meraki-MX with those of the other technologies, such as enterprise NGFW and software-defined network fabrics. Our application-centric approach means that Meraki MX can be a component in delivering solutions for zero-trust and microsegmentation with other Cisco technology like Cisco ACI, and other third parties. Cisco Meraki– Product Demo If all of this sounds interesting, take a look for yourself to see how AlgoSec helps with common challenges in these enterprise environments. More Where This Came From The AlgoSec integration with Cisco Meraki-MX is delivering solutions our customers want. If you want to discover more about the Meraki and AlgoSec joint solution, contact us at AlgoSec! We work together with Cisco teams and resellers and will be glad to schedule a meeting to share more details or walk through a more in depth demo. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | DNS Tunneling In The SolarWinds Supply Chain Attack

    The aim of this post is to provide a very high-level illustration of the DNS Tunneling method used in the SolarWinds supply chain attack.... Cloud Security DNS Tunneling In The SolarWinds Supply Chain Attack Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/23/20 Published The aim of this post is to provide a very high-level illustration of the DNS Tunneling method used in the SolarWinds supply chain attack . An Attacker compromises SolarWinds company and trojanizes a DLL that belongs to its software. Some of the customers receive the malicious DLL as an update for the SolarWinds Orion software. “Corporation XYZ” receives the malicious and digitally signed DLL via update. SolarWinds Orion software loads the malicious DLL as a plugin. Once activated, the DLL reads a local domain name “local.corp-xyz.com” (a fictious name). The malware encrypts the local domain name and adds it to a long domain name. The long domain name is queried with a DNS server (can be tapped by a passive DNS sensor). The recursive DNS server is not authorized to resolve avsvmcloud[.]com, so it forwards the request. An attacker-controlled authoritative DNS server resolves the request with a wildcard A record. The Attacker checks the victim’s name, then adds a CNAME record for the victim’s domain name. The new CNAME record resolves the long domain name into an IP of an HTTP-based C2 server. The malicious DLL downloads and executes the 2nd stage malware (TearDrop, Cobalt Strike Beacon). A Threat Researcher accesses the passive DNS (pDNS) records. One of the long domain names from the pDNS records is decrypted back into “local.corp-xyz.com”. The Researcher deducts that the decrypted local domain name belongs to “Corporation XYZ”. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Firewall performance tuning: Common issues & resolutions

    A firewall that runs 24/7 requires a good amount of computing resources. Especially if you are running a complex firewall system, your... Firewall Change Management Firewall performance tuning: Common issues & resolutions Asher Benbenisty 2 min read Asher Benbenisty Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 8/9/23 Published A firewall that runs 24/7 requires a good amount of computing resources. Especially if you are running a complex firewall system, your performance overhead can actually slow down the overall throughput of your systems and even affect the actual functionalities of your firewall. Here is a brief overview of common firewall performance issues and the best practices to help you tune your firewall performance . 7 Common performance issues with firewalls Since firewall implementations often include some networking hardware usage, they can slow down network performance and traffic bottlenecks within your network. 1. High CPU usage The more network traffic you deal with, the more CPU time your server will need. When a firewall is running, it adds to CPU utilization since the processes need more power to execute the network packet analysis and subsequent firewall This may lead to firewall failures in extreme cases where the firewall process is completely shut down or the system experiences a noticeable lag affecting overall functionality. A simple way to resolve this issue would be to increase the hardware capabilities. But as that might not be a viable solution in all cases, you must consider minimizing the network traffic with router-level filtering or decreasing the server load with optimized 2. Route flapping Router misconfiguration or hardware failure can cause frequent advertising of alternate routes. This will increase the load on your resources and thus lead to performance issues. 3. Network errors and discards A high number of error packets or discarded packets can burden your resources as these packets are still processed by the firewall even when they ultimately turn out to be dud in terms of traffic. Such errors usually happen when routers try to reclaim some buffer space. 4. Congested network access link Network access link congestion can be caused due to a bottleneck happening between a high bandwidth IP Network and LAN. When there is high traffic, the router queue gets filled and causes jitters and time delays. When there are more occurrences of jitter, more packets are dropped on the receiving end, causing a degradation of the quality of audio or video being transmitted. This issue is often observed in VoIP systems . 5. Network link failure When packet loss continues for over a few seconds, it can be deemed a network link failure. While re-establishing the link could take just a few seconds, the routers may already be looking for alternate routes. Frequent network link failures can be a symptom of power supply or hardware issues. 6. Misconfigurations Software or hardware misconfigurations can easily lead to overloading of LAN, and such a burden can easily affect the system’s performance. Situations like these can be caused by misconfigured multicast traffic and can affect the overall data transfer rate of all users. 7. Loss of packets Loss of packets can cause timeout errors, retransmissions, and network slowness. Loss of packets can happen due to delayed operations, server slowdown, misconfiguration, and several other reasons. How to fine-Tune your firewall performance Firewall performance issues can be alleviated with hardware upgrades. But as you scale up, upgrading hardware at an increasing scale would mean high expenses and an overall inefficient system. A much better cost-effective way to resolve firewall performance issues would be to figure out the root cause and make the necessary updates and fixes to resolve the issues. Before troubleshooting, you should know the different types of firewall optimization techniques: Hardware updates Firewall optimization can be easily achieved through real-time hardware updates and upgrades. This is a straightforward method where you add more capacity to your computing resources to handle the processing load of running a firewall. General best practices This involves the commonly used universal best practices that ensure optimized firewall configurations and working. Security policies, data standard compliances , and keeping your systems up to date and patched will all come under this category of optimizations. Any optimization effort generally applied to all firewalls can be classified under this type. Vendor specific Optimization techniques designed specifically to fit the requirements of a particular vendor are called vendor-specific optimizations. This calls for a good understanding of your protected systems, how traffic flows, and how to minimize the network load. Model specific Similar to vendor-specific optimizations, model-specific optimization techniques consider the particular network model you use. For instance, the Cisco network models usually have debugging features that can slow down performance. Similarly, the PIX 6.3 model uses TCP intercept that can slow down performance. Based on your usage and requirements, you can turn the specific features on or off to boost your firewall performance. Best practices to resolve the usual firewall performance bottlenecks Here are some proven best practices to improve your firewall’s performance. Additionally, you might also want to read Max Power by Timothy Hall for a wholesome understanding. Standardize your network traffic Any good practice starts with rectifying your internal errors and vulnerabilities. Ensure all your outgoing traffic aligns with your cybersecurity standards and regulations. Weed out any application or server sending out requests that don’t comply with the security regulations and make the necessary updates to streamline your network. Router level filtering To reduce the load on your firewall applications and hardware, you can use router-level network traffic filtering. This can be achieved by making a Standard Access List filter from the previously dropped requests and then routing them using this list for any other subsequent request attempts. This process can be time-consuming but is simple and effective in avoiding bottlenecks. Avoid using complicated firewall rules Complex firewall rules can be resource heavy and place a lot of burden on your firewall performance. Simplifying this ruleset can boost your performance to a great extent. You should also regularly audit these rules and remove unused rules. To help you clean up firewall rules, you can start with Algosec’s firewall rule cleanup and performance optimization tool . Test your firewall Regular testing and auditing of your firewall can help you identify any probable causes for performance slowdown. You can collect information on your network traffic and use it to optimize how your firewall operates. You can use Algosec’s firewall auditor services to take care of all your auditing requirements and ensure compliance at all levels. Make use of common network troubleshooting tools To analyze the network traffic and troubleshoot your performance issues, you can use common network tools like netstat and iproute2. These tools provide you with network stats and in-depth information about your traffic that can be well utilized to improve your firewall configurations. You can also use check point servers and tools like SecureXL, and CoreXL. Follow a well-defined security policy As with any security implementation, you should always have a well-defined security policy before configuring your firewalls. This gives you a good idea of how your firewall configurations are made and lets you simplify them easily. Change management is also essential to your firewall policy management process . You should also document all the changes, reviews, and updates you make to your security policies to trace any problematic configurations and keep your systems updated against evolving cyber threats. A good way to mitigate security policy risks is to utilize AlgoSec. Network segmentation Segmentation can help boost performance as it helps isolate network issues and optimize bandwidth allocation. It can also help to reduce the traffic and thus further improve the performance. Here is a guide on network segmentation you can check out. Automation Make use of automation to update your firewall settings. Automating the firewall setup process can greatly reduce setup errors and help you make the process more efficient and less time-consuming. You can also extend the automation to configure routers and switches. Algobot is an intelligent chatbot that can effortlessly handle network security policy management tasks for you. Handle broadcast traffic efficiently You can create optimized rules to handle broadcast traffic without logging to improve performance. Make use of optimized algorithms Some firewalls, such as the Cisco Pix, ASA 7.0 , Juniper network models, and FWSM 4.0 are designed to match packets without dependency on rule order. You can use these firewalls; if not, you will have to consider the rule order to boost the performance. To improve performance, you should place the most commonly used policy rules on the top of the rule base. The SANS Institute recommends the following order of rules: Anti-spoofing filters User permit rules Management permit rules Noise drops Deny and alert Deny and log DNS objects Try to avoid using DNS objects that need DNS lookup services. This slows down the firewall. Router interface design Matching the router interface with your firewall interface is a good way to ensure good performance. If your router interface is half duplex and the firewall is full duplex, the mismatch can cause some performance issues. Similarly, you should try to match the switch interface with your firewall interface, making them report on the same speed and mode. For gigabit switches, you should set up your firewall to automatically adjust speed and duplex mode. You can replace the cables and patch panel ports if you cannot match the interfaces. VPN If you are using VPN and firewalls, you can separate them to remove some VPN traffic and processing load from the firewall and thus increase the performance. UTM features You can remove the additional UTM features like Antivirus, and URL scanning features from the firewall to make it more efficient. This does not mean you completely eliminate any additional security features. Instead, just offload them from the firewall to make the firewall work faster and take up fewer computing resources. Keep your systems patched and updated Always keep your systems, firmware, software, and third-party applications updated and patched to deal with all known vulnerabilities. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Stop hackers from poisoning the well: Protecting critical infrastructure against cyber-attacks

    Attacks on water treatment plants show just how vulnerable critical infrastructure is to hacking – here’s how these vital services should... Cyber Attacks & Incident Response Stop hackers from poisoning the well: Protecting critical infrastructure against cyber-attacks Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 3/31/21 Published Attacks on water treatment plants show just how vulnerable critical infrastructure is to hacking – here’s how these vital services should be protected. Criminals plotting to poison a city’s water supply is a recurring theme in TV and movie thrillers, such as 2005’s Batman Begins. But as we’ve seen recently, it’s more than just a plot device: it’s a cyber-threat which is all too real. During the past 12 months, there have been two high-profile attacks on water treatment systems that serve local populations, both with the aim of causing harm to citizens. The first was in April 2020, targeting a plant in Israel . Intelligence sources said that hackers gained access to the plant and tried altering the chlorine levels in drinking water – but luckily the attack was detected and stopped. And in early February, a hacker gained access to the water system of Oldsmar, Florida and tried to pump in a dangerous amount of sodium hydroxide. The hacker succeeded in starting to add the chemical, but luckily a worker spotted what was happening and reversed the action. But what could have happened if those timely interventions had not been made? These incidents are a clear reminder that critical national infrastructure is vulnerable to attacks – and that those attacks will keep on happening, with the potential to impact the lives of millions of people.  And of course, the Covid-19 pandemic has further highlighted how essential critical infrastructure is to our daily lives. So how can better security be built into critical infrastructure systems, to stop attackers being able to breach them and disrupt day-to-day operations?  It’s a huge challenge, because of the variety and complexity of the networks and systems in use across different industry sectors worldwide. Different systems but common security problems For example, in water and power utilities, there are large numbers of cyber-physical systems consisting of industrial equipment such as turbines, pumps and switches, which in turn are managed by a range of different industrial control systems (ICS). These were not designed with security in mind:  they are simply machines with computerized controllers that enact the instructions they receive from operators.  The communications between the operator and the controllers are done via IP-based networks – which, without proper network defenses, means they can be accessed over the Internet – which is the vector that hackers exploit. As such, irrespective of the differences between ICS controls, the security challenges for all critical infrastructure organizations are similar:  hackers must be stopped from being able to infiltrate networks; if they do succeed in breaching the organization’s defenses, they must be prevented from being able to move laterally across networks and gain access to critical systems. This means  network segmentation  is one of the core strategies for securing critical infrastructure, to keep operational systems separate from other networks in the organization and from the public Internet and surround them with security gateways so that they cannot be accessed by unauthorized people. In the attack examples we mentioned earlier, properly implemented segmentation would prevent a hacker from being able to access the PC which controls the water plant’s pumps and valves. With damaging ransomware attacks increasing over the past year, which also exploit internal network connections and pathways to spread rapidly and cause maximum disruption,  organizations should also employ security best-practices to block or limit the impact of ransomware attacks  on their critical systems. These best practices have not changed significantly since 2017’s massive WannaCry and NotPetya attacks, so organizations would be wise to check and ensure they are employing them on their own networks. Protecting critical infrastructure against cyber-attacks is a complex challenge because of the sheer diversity of systems in each sector.  However, the established security measures we’ve outlined here are extremely effective in protecting these vital systems – and in turn, protecting all of us. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | The Comprehensive 9-Point AWS Security Checklist

    A practical AWS security checklist will help you identify and address vulnerabilities quickly. In the process, ensure your cloud security... Cloud Security The Comprehensive 9-Point AWS Security Checklist Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/20/23 Published A practical AWS security checklist will help you identify and address vulnerabilities quickly. In the process, ensure your cloud security posture is up-to-date with industry standards. This post will walk you through an 8-point AWS security checklist. We’ll also share the AWS security best practices and how to implement them. The AWS shared responsibility model AWS shared responsibility model is a paradigm that describes how security duties are split between AWS and its clients. This approach considers AWS a provider of cloud security architecture. And customers still protect their individual programs, data, and other assets. AWS’s Responsibility According to this model, AWS maintains the safety of the cloud structures. This encompasses the network, the hypervisor, the virtualization layer, and the physical protection of data centers. AWS also offers clients a range of safety precautions and services. They include surveillance tools, a load balancer, access restrictions, and encryption. Customer Responsibility As a customer, you are responsible for setting up AWS security measures to suit your needs. You also do this to safeguard your information, systems, programs, and operating systems. Customer responsibility entails installing reasonable access restrictions and maintaining user profiles and credentials. You can also watch for security issues in your work setting. Let’s compare the security responsibilities of AWS and its customers in a table: Comprehensive 8-point AWS security checklist 1. Identity and access management (IAM) 2. Logical access control 3. Storage and S3 4. Asset management 5. Configuration management. 6. Release and deployment management 7. Disaster recovery and backup 8. Monitoring and incidence management Identity and access management (IAM) IAM is a web service that helps you manage your company’s AWS access and security. It allows you to control who has access to your resources or what they can do with your AWS assets. Here are several IAM best practices: Replace access keys with IAM roles. Use IAM roles to provide AWS services and apps with the necessary permissions. Ensure that users only have permission to use the resources they need. Do this by implementing the concept of least privilege . Whenever communicating between a client and an ELB, use secure SSL versions. Use IAM policies to specify rights for user groups and centralized access management. Use IAM password policies to impose strict password restrictions on all users. Logical access control Logical access control involves controlling who accesses your AWS resources. This step also entails deciding the types of actions that users can perform on the resources. You can do this by allowing or denying access to specific people based on their position, job function, or other criteria. Logical access control best practices include the following: Separate sensitive information from less-sensitive information in systems and data using network partitioning Confirm user identity and restrict the usage of shared user accounts. You can use robust authentication techniques, such as MFA and biometrics. Protect remote connectivity and keep offsite access to vital systems and data to a minimum by using VPNs. Track network traffic and spot shady behavior using the intrusion detection and prevention systems (IDS/IPS). Access remote systems over unsecured networks using the secure socket shell (SSH). Storage and S3 Amazon S3 is a scalable object storage service where data may be stored and retrieved. The following are some storage and S3 best practices: Classify the data to determine access limits depending on the data’s sensitivity. Establish object lifecycle controls and versioning to control data retention and destruction. Use the Amazon Elastic Block Store (Amazon EBS) for this process. Monitor the storage and audit accessibility to your S3 buckets using Amazon S3 access logging. Handle encryption keys and encrypt confidential information in S3 using the AWS Key Management Service (KMS). Create insights on the current state and metadata of the items stored in your S3 buckets using Amazon S3 Inventory. Use Amazon RDS to create a relational database for storing critical asset information. Asset management Asset management involves tracking physical and virtual assets to protect and maintain them. The following are some asset management best practices: Determine all assets and their locations by conducting routine inventory evaluations. Delegate ownership and accountability to ensure each item is cared for and kept safe. Deploy conventional and digital safety safeguards to stop illegal access or property theft. Don’t use expired SSL/TLS certificates. Define standard settings to guarantee that all assets are safe and functional. Monitor asset consumption and performance to see possible problems and possibilities for improvement. Configuration management. Configuration management involves monitoring and maintaining server configurations, software versions, and system settings. Some configuration management best practices are: Use version control systems to handle and monitor modifications. These systems can also help you avoid misconfiguration of documents and code . Automate configuration updates and deployments to decrease user error and boost consistency. Implement security measures, such as firewalls and intrusion sensing infrastructure. These security measures will help you monitor and safeguard setups. Use configuration baselines to design and implement standard configurations throughout all platforms. Conduct frequent vulnerability inspections and penetration testing. This will enable you to discover and patch configuration-related security vulnerabilities. Release and deployment management Release and deployment management involves ensuring the secure release of software and systems. Here are some best practices for managing releases and deployments: Use version control solutions to oversee and track modifications to software code and other IT resources. Conduct extensive screening and quality assurance (QA) processes. Do this before publishing and releasing new software or updates. Use automation technologies to organize and distribute software upgrades and releases. Implement security measures like firewalls and intrusion detection systems. Disaster recovery and backup Backup and disaster recovery are essential elements of every organization’s AWS environment. AWS provides a range of services to assist clients in protecting their data. The best practices for backup and disaster recovery on AWS include: Establish recovery point objectives (RPO) and recovery time objectives (RTO). This guarantees backup and recovery operations can fulfill the company’s needs. Archive and back up data using AWS products like Amazon S3, flow logs, Amazon CloudFront and Amazon Glacier. Use AWS solutions like AWS Backup and AWS Disaster Recovery to streamline backup and recovery. Use a backup retention policy to ensure that backups are stored for the proper amount of time. Frequently test backup and recovery procedures to ensure they work as intended. Redundancy across many regions ensures crucial data is accessible during a regional outage. Watch for problems that can affect backup and disaster recovery procedures. Document disaster recovery and backup procedures. This ensures you can perform them successfully in the case of an absolute disaster. Use encryption for backups to safeguard sensitive data. Automate backup and recovery procedures so human mistakes are less likely to occur. Monitoring and incidence management Monitoring and incident management enable you to track your AWS environment and respond to any issues. Amazon web services monitoring and incident management best practices include: Monitoring API traffic and looking for any security risks with AWS CloudTrail. Use AWS CloudWatch to track logs, performance, and resource usage. Set up modifications to AWS resources and monitor for compliance problems using AWS Config. Combine and rank security warnings from various AWS user accounts and services using AWS Security groups. Using AWS Lambda and other AWS services to implement automated incident response procedures. Establish a plan for responding to incidents that specify roles and obligations and define a clear escalation path. Exercising incident response procedures frequently to make sure the strategy works. Checking for flaws in third-party applications and applying quick fixes. The use of proactive monitoring to find possible security problems before they become incidents. Train your staff on incident response best practices. This way, you ensure that they’ll respond effectively in case of an incident. Top challenges of AWS security DoS attacks A Distributed denial of service (DDoS) attack poses a huge security risk to AWS systems. It involves an attacker bombarding a network with traffic from several sources. In the process, straining its resources and rendering it inaccessible to authorized users. To minimize this sort of danger, your DevOps should have a thorough plan to mitigate this sort of danger. AWS offers tools and services, such as AWS Shield, to assist fight against DDoS assaults. Outsider AWS compromise. Hackers can use several strategies to get illegal access to your AWS account. For example, they may use psychological manipulation or exploit software flaws. Once outsiders gain access, they may use data outbound techniques to steal your data. They can also initiate attacks on other crucial systems. Insider threats Insiders with permission to access your AWS resources often pose a huge risk. They can damage the system by modifying or stealing data and intellectual property. Only grant access to authorized users and limit the access level for each user. Monitor the system and detect any suspicious activities in real-time. Root account access The root account has complete control over an AWS account and has the highest degree of access.Your security team should access the root account only when necessary. Follow AWS best practices when assigning root access to IAM users and parties. This way, you can ensure that only those who should have root access can access the server. Security best practices when using AWS Set strong authentication policies. A key element of AWS security is a strict authentication policy. Implement password rules, demanding solid passwords and frequent password changes to increase security. Multi-factor authentication (MFA) is a recommended security measure for access control. It involves a user providing two or more factors, such as an ID, password, and token code, to gain access. Using MFA can improve the security of your account. It can also limit access to resources like Amazon Machine Images (AMIs). Differentiate security of cloud vs. in cloud Do you recall the AWS cloud shared responsibility model? The customer handles configuring and managing access to cloud services. On the other hand, AWS provides a secure cloud infrastructure. It provides physical security controls like firewalls, intrusion detection systems, and encryption. To secure your data and applications, follow the AWS shared responsibility model. For example, you can use IAM roles and policies to set up virtual private cloud VPCs. Keep compliance up to date AWS provides several compliance certifications for HIPAA, PCI DSS, and SOC 2. The certifications are essential for ensuring your organization’s compliance with industry standards. While NIST doesn’t offer certifications, it provides a framework to ensure your security posture is current. AWS data centers comply with NIST security guidelines. This allows customers to adhere to their standards. You must ensure that your AWS setup complies with all legal obligations as an AWS client. You do this by keeping up with changes to your industry’s compliance regulations. You should consider monitoring, auditing, and remedying your environment for compliance. You can use services offered by AWS, such as AWS Config and AWS CloudTrail log, to perform these tasks. You can also use Prevasio to identify and remediate non-compliance events quickly. It enables customers to ensure their compliance with industry and government standards. The final word on AWS security You need a credible AWS security checklist to ensure your environment is secure. Cloud Security Posture Management solutions produce AWS security checklists. They provide a comprehensive report to identify gaps in your security posture and processes for closing them. With a CSPM tool like Prevasio , you can audit your AWS environment. And identify misconfigurations that may lead to vulnerabilities. It comes with a vulnerability assessment and anti-malware scan that can help you detect malicious activities immediately. In the process, your AWS environment becomes secure and compliant with industry standards. Prevasio comes as cloud native application protection platform (CNAPP). It combines CSPM, CIEM and all the other important cloud security features into one tool. This way, you’ll get better visibility of your cloud security on one platform. Try Prevasio today ! Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

bottom of page