top of page

Search results

698 results found with an empty search

  • AlgoSec | Six best practices for managing security in the hybrid cloud

    Omer Ganot, Cloud Security Product Manager at AlgoSec, outlines six key things that businesses should be doing to ensure their security... Hybrid Cloud Security Management Six best practices for managing security in the hybrid cloud Omer Ganot 2 min read Omer Ganot Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 8/5/21 Published Omer Ganot, Cloud Security Product Manager at AlgoSec, outlines six key things that businesses should be doing to ensure their security in a hybrid cloud environment Over the course of the past decade, we’ve seen cloud computing vastly transitioning from on-prem to the public cloud. Businesses know the value of the cloud all too well, and most of them are migrating their operations to the cloud as quickly as possible, particularly considering the pandemic and the push to remote working. However, there are major challenges associated with transitioning to the cloud, including the diversity and breadth of network and security controls and a dependency on legacy systems that can be difficult to shake. Public cloud allows organizations for better business continuity, easier scalability and paves the way for DevOps to provision resources and deploy projects quickly. But, what’s the security cost when looking at the full Gpicture of the entire hybrid network? Here I outline the six best practices for managing security in the hybrid cloud: 1. Use next-generation firewalls Did you know that almost half (49%) of businesses report running virtual editions of traditional firewalls in the cloud? It’s becoming increasingly clear that cloud providers’ native security controls are not enough, and that next-gen firewall solutions are needed. While a traditional stateful firewall is designed to monitor incoming and outgoing network traffic, a next-generation firewall (NGFW) includes features such as application awareness and control, integrated breach prevention and active threat intelligence. In other words, while a traditional firewall will allow for layer 1-2 protection, NGFWs allow for protection from levels 3 through 7. 2. Use dynamic objects On-premise security tends to be easier because subnets and IP addresses are typically static. In the cloud, however, workloads are dynamically provisioned and decommissioned, IP addresses change, so traditional firewalls simply cannot keep up. NGFW dynamic objects allow businesses to match a group of workloads using cloud-native categories, and then use these objects in policies to properly enforce traffic and avoid the need to frequently update the policies. 3. Gain 360-degree visibility As with any form of security, visibility is critical. Without that, even the best preventative or remedial strategies will fall flat. Security should be evaluated both in your cloud services and in the path from the internet and data center clients. Having one single view over the entire network estate is invaluable when it comes to hybrid cloud security. AlgoSec’s powerful AutoDiscovery capabilities help you understand the network flows in your organization. You can automatically connect the recognized traffic flows to the business applications that use them and seamlessly manage the network security policy across your entire hybrid estate. 4. Evaluate risk in its entirety Too many businesses are guilty of only focusing on cloud services when it comes to managing security. This leaves them inherently vulnerable on other network paths, such as the ones that run from the internet and data centers towards the services in the cloud. As well as gaining 360-degree visibility over the entire network estate, businesses also need to be sure to actively monitor those areas for risk with equal weighting in terms of priority. 5. Clean up cloud policies regularly The cloud security landscape changes at a faster rate than most businesses can realistically keep up with. For that reason, cloud security groups tend to change with the wind, constantly being adjusted to account for new applications. If a business doesn’t keep on top of its cloud policy ‘housekeeping’, they’ll soon become bloated, difficult to maintain and risky. Keep cloud security groups clean and tidy so they’re accurate, efficient and don’t expose risk. 6. Embrace DevSecOps The cloud might be perfect for DevOps in terms of easy and agile resource and security provisioning using Infrastructure-as-code tools, but the methodology is seldom used for risk analysis and remediation recommendations. Businesses that want to take control of their cloud security should pay close attention to this. Before a new risk is introduced, you should obtain an automatic what-if risk check as part of the code’s pull request, before pushing to production. From visibility and network management right through to risk evaluation and clean-up, staying secure in a hybrid cloud environment might sound like hard work, but by embracing these fundamental practices your organization can start putting together the pieces of its own security puzzle. The AlgoSec Security Management Suite (ASMS) makes it easy to support your cloud migration journey, ensuring that it does not block critical business services and meet compliance requirements. To learn more or ask for your personalized demo, click here . Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Mitigating cloud security risks through comprehensive automated solutions

    A recent news article from Bleeping Computer called out an incident involving Japanese game developer Ateam, in which a misconfiguration... Cyber Attacks & Incident Response Mitigating cloud security risks through comprehensive automated solutions Malynnda Littky-Porath 2 min read Malynnda Littky-Porath Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/8/24 Published A recent news article from Bleeping Computer called out an incident involving Japanese game developer Ateam, in which a misconfiguration in Google Drive led to the potential exposure of sensitive information for nearly one million individuals over a period of six years and eight months. Such incidents highlight the critical importance of securing cloud services to prevent data breaches. This blog post explores how organizations can avoid cloud security risks and ensuring the safety of sensitive information. What caused the Ateam Google Drive misconfiguration? Ateam, a renowned mobile game and content creator, discovered on November 21, 2023, that it had mistakenly set a Google Drive cloud storage instance to “Anyone on the internet with the link can view” since March 2017. This configuration error exposed 1,369 files containing personal information, including full names, email addresses, phone numbers, customer management numbers, and device identification numbers, for approximately 935,779 individuals. Avoiding cloud security risks by using automation To prevent such incidents and enhance cloud security, organizations can leverage tools such as AlgoSec, a comprehensive solution that addresses potential vulnerabilities and misconfigurations. It is important to look for cloud security partners who offer the following key features: Automated configuration checks: AlgoSec conducts automated checks on cloud configurations to identify and rectify any insecure settings. This ensures that sensitive data remains protected and inaccessible to unauthorized individuals. Policy compliance management: AlgoSec assists organizations in adhering to industry regulations and internal security policies by continuously monitoring cloud configurations. This proactive approach reduces the likelihood of accidental exposure of sensitive information. Risk assessment and mitigation: AlgoSec provides real-time risk assessments, allowing organizations to promptly identify and mitigate potential security risks. This proactive stance helps in preventing data breaches and maintaining the integrity of cloud services. Incident response capabilities: In the event of a misconfiguration or security incident, AlgoSec offers robust incident response capabilities. This includes rapid identification, containment, and resolution of security issues to minimize the impact on the organization. The Ateam incident serves as a stark reminder of the importance of securing cloud services to safeguard sensitive data. AlgoSec emerges as a valuable ally in this endeavor, offering automated configuration checks, policy compliance management, risk assessment, and incident response capabilities. By incorporating AlgoSec into their security strategy, organizations can significantly reduce the risk of cloud security incidents and ensure the confidentiality of their data. Request a brief demo to learn more about advanced cloud protection. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Zero Trust Design

    In today’s evolving threat landscape, Zero Trust Architecture has emerged as a significant security framework for organizations. One... Zero Trust Zero Trust Design Nitin Rajput 2 min read Nitin Rajput Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 5/18/24 Published In today’s evolving threat landscape, Zero Trust Architecture has emerged as a significant security framework for organizations. One influential model in this space is the Zero Trust Model, attributed to John Kinderbag. Inspired by Kinderbag’s model, we explore how our advanced solution can effectively align with the principles of Zero Trust. Let’s dive into the key points of mapping the Zero Trust Model with AlgoSec’s solution, enabling organizations to strengthen their security posture and embrace the Zero Trust paradigm. My approach of mapping Zero Trust Model with AlgoSec solution is based on John Kinderbag’s Zero Trust model ( details ) which being widely followed, and I hope it will help organizations in building their Zero trust strategy. Firstly, let’s understand what Zero trust is all about in a simple language. Zero Trust is a Cybersecurity approach that articulates that the fundamental problem we have is a broken trust model where the untrusted side of the network is the evil internet, and the trusted side is the stuff we control. Therefore, it is an approach to designing and implementing a security program based on the notion that no user or device or agent should have implicit trust. Instead, anyone or anything, a device or system that seeks access to corporate assets must prove it should be trusted. The primary goal of Zero Trust is to prevent breaches. Prevention is possible. In fact, it’s more cost effective from a business perspective to prevent a breach than it is to attempt to recover from a breach, pay a ransom, and the deal with the costs of downtime or lost customers. As per John Kinderbag, there are Four Zero Trust Design Principles and Five-Step Zero Trust Design Methodology. The Four Zero Trust Design Principles: The first and the most important principle of your Zero Trust strategy is know “What is the Business trying to achieve?”. Second, start with DAAS (Data, Application, Asset and Services) elements and protect surfaces that need protection and design outward from there. Third, determine who needs to have access to a resource in order to get their job done, commonly known as least privilege. Fourth, all the traffic going to and from a protect surface must be inspected and logged for malicious content. Define Business Outcomes Design from the inside out Determine who or what needs access Inspect and log all traffic The Five-Step Zero Trust Design Methodology To make your Zero trust journey achievable, you need a repeatable process to follow. The first step in the Zero trust is to break down your environment into smaller pieces that you need to protect (protect surfaces). The second step for deploying Zero Trust in each protect surfaces is to map the transactions flows so that we can allow only the ports and the address needed and nothing else. Everyone wants to know what products to buy to do Zero trust or to eliminate trust between digital systems, the truth is that you won’t know the answer to that until you’ve gone through the process. Which brings us to the third step in the methodology: architecting the Zero trust environment. Ultimately, we need to instantiate Zero Trust as a Layer 7 policy statement. Use the Kipling Method of Zero Trust policy writing to determine who or what can access your protect surface. The fifth design principle of Zero Trust is to inspect and log all traffic, for monitor and maintain, one needs to take all of the telemetry – whether it’s from a network detection and response tool, or from firewall or server application logs and then learn from them. As you learn over time, you can make security stronger and stronger. Define the protect surface Map the transaction flows Architect a Zero trust environment Create Zero trust policies Monitor and maintain. How AlgoSec aligns with “Map the transaction Flows” the 2nd step of Design Methodology? AlgoSec Auto-Discovery. analyses your traffic flows, turning them into a clear map. AutoDiscovery receives network traffic metadata as NetFlow, SFLOW, or full packets and then digest multiple streams of traffic metadata to let you clearly visualize your transaction flows. Once the transaction flows are discovered and optimized, the system keeps tracking changes in these flows. Once new flows are discovered in the network, the application description is updated with the new flows. Outcome: Clear visualization of transaction flows. Updated application description. Optimized transaction flows. How AlgoSec aligns with “Architect Zero Trust Policies” – the 4th step of Design Methodology? With AlgoSec, you can automate the security policy change process without introducing any element of risk, vulnerability, or compliance violation. AlgoSec allows you to ingest the discovered transaction flows as a Traffic Change request and analyze those traffic changes before they are implemented all the to your Firewalls, Public Cloud and SDN Solutions and validate successful changes as intended, all within your existing IT Service Management (ITSM) solutions. Outcome: Analyzed traffic changes for implementation. Implemented security policy changes without risk, vulnerability, or compliance violations. How Algosec aligns with “Monitor and maintain” – the 5th step of Design Methodology? AlgoSec analyzes security by analyzing firewall policies, firewall rules, firewall traffic logs and firewall change configurations. Detailed analysis of the security logs offers critical network vital intelligence about security breaches and attempted attacks like virus, trojans, and denial of service among others. With AlgoSec traffic flow analysis, you can monitor traffic within a specific firewall rule. You do not need to allow all traffic to traverse in all directions but instead, you can monitor it through the pragmatic behaviors on the network and enable network firewall administrators to recognize which firewall rules they can create and implement to allow only the necessary access. Outcome: Critical network intelligence, identification of security breaches and attempted attacks. Enhanced firewall rule creation and implementation, allowing only necessary access. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Why organizations need to embrace new thinking in how they tackle hybrid cloud security challenges

    Hybrid cloud computing enables organizations to deploy sensitive workloads on-premise or in a private cloud, while hosting less... DevSecOps Why organizations need to embrace new thinking in how they tackle hybrid cloud security challenges Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 10/9/22 Published Hybrid cloud computing enables organizations to deploy sensitive workloads on-premise or in a private cloud, while hosting less business-critical resources on public clouds. But despite its many benefits, the hybrid environment also creates security concerns. AlgoSec’s co-founder and CTO, Prof. Avishai Wool shares his expert insights on these concerns and offers best practices to boost hybrid cloud security. Hybrid cloud computing combines on-premises infrastructure, private cloud services, and one or more public clouds. Going hybrid provides businesses with enhanced flexibility, agility, cost savings, and scalability to innovate, grow, and gain a competitive advantage. So, how can you simplify and strengthen security operations in the hybrid cloud? It all starts with visibility – you still can’t protect what you can’t see To protect their entire hybrid infrastructure, applications, workloads, and data, security teams need to know what these assets are and where they reside. They also need to see the entire hybrid estate and not just the individual elements. However, complete visibility is a serious hybrid cloud security challenge. Hybrid environments are highly complex, which can create security blind spots, which then prevent teams from identifying, evaluating, and most importantly, mitigating risk. Another hybrid cloud security concern is that you cannot implement a fragmented security approach to control the entire network. With thousands of integrated and inter-dependent resources and data flowing between them, vulnerabilities crop up, increasing the risk of cyberattacks or breaches. For complete hybrid cloud security, you need a holistic approach that can help you control the entire network. Is DevSecOps the panacea? Not quite In many organizations, DevSecOps teams manage cloud security because they have visibility into what’s happening inside the cloud. However, in the hybrid cloud, many applications have servers or clients existing outside the cloud, which DevSecOps may not have visibility into. Also, the protection of data flowing into and out of the cloud is not always under their remit. To make up for these gaps, other teams are required to manage security operations and minimize hybrid cloud risks. These additional processes and team members must be coordinated to ensure continuous security across the entire hybrid network environment. But this is easier said than done. Using IaC to balance automation with oversight is key, but here’s why you shouldn’t solely rely on it Infrastructure as code (IaC) will help you automatically deploy security controls in the hybrid cloud to prevent misconfiguration errors, non-compliance, and violations while in the production stage and pre application testing. With IaC-based security, you can define security best practices in template files, which will minimize risks and enhance your security posture. But there’s an inherent risk in putting all your eggs in the automation and IaC basket. Due to the fact that all the controls are on the operational side, it can create serious hybrid cloud security issues. And without human attention and action, vulnerabilities may remain unaddressed and open the door to cyberattacks. Since security professionals who are not on the operational side must oversee the cloud environment, it could easily open the door to miscommunication and human errors – a very costly proposition for organizations. For this very reason, you should also implement a process to regularly deploy automatic updates without requiring time-consuming approvals that slow down workflows and weaken security. Strive for 95% automated changes and only involve a person for the remaining 5% that requires human input. Hybrid cloud security best practices – start early, start strong When migrating from on-prem to the cloud, you can choose a greenfield migration or a lift-and-shift migration. Greenfield means rolling out a brand-new application. In this case, ensure that security considerations are “baked in” from the beginning and across all processes. This “shift left” approach helps build an environment that’s secure from the get-go. This ensures that all team members adhere to a unified set of security policy rules to minimize vulnerabilities and reduce security risks within the hybrid cloud environment. If you lift-and-shift on-prem applications to the cloud, note any security assumptions made when they were designed. This is important because they were not built for the cloud and may incorporate protocols that increase security risks. Next, implement appropriate measures during migration planning. For example, implement an Application Load Balancer if applications leverage plaintext protocols, and use sidecars to encrypt applications without having to modify the original codebase. You can also leverage hybrid cloud security solutions to detect and mitigate security problems in real-time. Matching your cloud security with application structure is no longer optional Before moving to a hybrid cloud, map the business logic, application structure, and application ownership into the hybrid cloud estate’s networking structure. To simplify this process, here are some tried and proven ways to consider. Break up your environment into a virtual private cloud (VPC) or virtual network. With the VPC, you can monitor connections, screen traffic, create multiple subnets, and also restrict instance access to improve security posture. Use networking constructs to segregate applications into different functional and networking areas in the cloud. This way, you can deploy network controls to segment your cloud estate and ensure that only authorized users can access sensitive data and resources. Tag all resources based on their operating system, business unit, and geographical area. Tags with descriptive metadata can help to identify resources. They also establish ownership and accountability, provide visibility into cloud consumption, and help with the deployment of security policies. Conclusion In today’s fast-paced business environment, hybrid cloud computing can benefit your organization in many ways. But to capture these benefits, you should make an effort to boost hybrid cloud security. Incorporate the best practices discussed here to improve security and take full advantage of your hybrid environment. To learn more about hybrid cloud security, listen to our Lessons in Cybersecurity podcast episode or head to our hybrid cloud resource hub here . Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Security group architecture for AWS: How to overcome security group limits

    As with all cloud vendors, AWS users share responsibility for securing their infrastructure against risk. Amazon provides the tools you... AWS Security group architecture for AWS: How to overcome security group limits Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 8/9/23 Published As with all cloud vendors, AWS users share responsibility for securing their infrastructure against risk. Amazon provides the tools you need to filter traffic, but configuring those tools is up to you. Firewalls are one of the tools you’ll use to filter traffic and secure Virtual Private Cloud (VPC) instances. Instead of using traditional firewalls, Amazon provides users with AWS security groups, which are flexible, stateful firewalls capable of filtering inbound and outbound traffic. However, there are limits to what you can do with AWS security groups. First, they only allow traffic – you can’t configure them to deny traffic. Second, the maximum number of rules you can set for a single group is 60. This isn’t a big issue for an Amazon EC2 instance designed to address inbound traffic. You’ll either want your AWS EC2 to accept ingress from the entire internet or you’ll want to configure access for a few internal IP addresses. But for outbound traffic, 60 rules simply isn’t enough. You’ll use a dozen of them just allowing access to GitHub’s API . Add in a few third-party partners and you’re already well past the limit. Amazon VPC resource limits explained Amazon sets clear limits on the AWS services and resources it makes available to users. In some cases, you can increase these limits by contacting AWS support. These limits are generally assessed on a per-Region basis. Here are some of the limits Amazon places on AWS users: Security group limits 2500 VPC security groups per Region 60 IPv4 rules per security group 60 IPv6 rules per security group 5 security groups per network interface VPC and subnet limits 5 VPCs per Region 200 Subnets per VPC 5 IPv4 CIDR blocks per VPC 5 IPv6 CIDR blocks per VPC Limits to elastic IP addresses and gateways 5 Elastic IP addresses per Region 2 Elastic IP Addresses per public NAT gateway 5 Egress-only internet gateways per Region 5 NAT gateways per Availability Zone One carrier gateway per VPC Prefix list limits 100 prefix lists per Region 1000 versions per prefix list 5000 prefix list references per resource type Network ACL limits 200 Network ACLs per VPC 20 Rules per Network ACL How to manage AWS cloud security group limits effectively Traditional firewalls may have thousands of security rules, including a complex combination of inbound rules and egress filters. Crucially, they can also enforce outbound rules that include denying traffic – something Amazon does not allow regular security groups to do. While AWS offers powerful tools for securing cloud workflows, Amazon VPC users must find ways to overcome these limitations. Fortunately, there are a few things you can do to achieve exactly that. Optimize your VPC security groups. Use Network Access Control Lists to secure assets at the subnet level. Use a domain name filtering system that reduces the number of IP addresses security group rules need to resolve. Optimize your Amazon virtual private cloud configuration Amazon VPC is a virtual network that contains many of the elements you’d expect from a traditional network. It has IP addresses, route tables, subnets, and internet gateways. Unlike a traditional network, you can easily configure many of your VPC environment through a command line interface (CLI). You can establish VPC peering connections, implement identity and access management (IAM) protocols, and configure elastic network interfaces without manually handling any hardware. But first, you need to set up and protect your VPC by setting up and configuring security groups. If you don’t specify a particular group, Amazon EC2 will use the default security group. If you haven’t added new security groups since creating your AWS account, you may only have that one default security group. The first step to optimizing security is expanding the number of security groups you have available. Here’s an example of the code you can use to create a new security group in the AWS console:aws ec2 create-security-group –group-name web-pci-sg –description “allow SSL traffic” –vpc-id vpc-555666777 This creates a new group named web-pci-sg and describes it as a group designed to allow SSL traffic on the network. Remember that security groups don’t support deny rules. Here is the code you would use to add a rule to that group: aws ec2 authorize-security-group-ingress \ –group-name web-pci-sg \ –protocol https \–port 443 \ –cidr This rule specifically allows SSL traffic using the HTTPS protocol to use port 443, which is the standard port for HTTPS traffic. You can use the last argument to specify the cidr block the rule will direct traffic through. This gives you the ability to manage traffic through specific subnets, which is important for the next step. This example focuses on just one type of rule in one context. To take full advantage of the security tools AWS makes available, you’ll want to create custom rules for endpoints, load balancers, nat gateways, and more. Although you’re limited to 60 rules per security group, creating many groups lets you assign hundreds of rules to any particular instance. Security architecture and network ACLs Network Access Control Lists provide AWS users with additional filtering capabilities. Network ACLs are similar to security groups in many ways, but come with a few key differences: Network ACLs can contain deny rules. You can write Network ACL rules to include explicit actions, like blocking particular IP addresses or routing VPN users in a specific way. Network ACLs are enforced at the subnet level. This means they apply to every instance in the subnet, in addition to whatever rules exist at the security group level. As mentioned above, each Network ACL can contain up to 20 rules. However, you can have up to 200 Network ACLs per VPC, which gives you a total of 4000 potential rules. Along with instance-specific security group rules, this offers much more flexibility for setting up robust AWS security architecture. Since Network ACLs can deny traffic, they are a useful tool for managing access to databases and other sensitive assets. For example, you may wish to exclude users who don’t have the appropriate permissions from your Amazon RDS instance. You may also want to filter SSH (Secure Shell) connections coming from unknown sources, or limit connections between different internal instance types. To do this effectively, you need to group these assets under the same subnet and make sure that the appropriate rules are enabled for all of them. You can also write asset-specific rules at the security group level, ensuring every asset has its own optimal configuration. The larger your AWS environment is, the more complex this process may become. Take care to avoid misconfigurations – it’s very easy to accidentally write security group rules and Network ACL rules that aren’t compatible, or that cause problems when you access the instance. To avoid this, try to condense your rules as much as possible. Avoid limits by filtering domain names directly Although you can create a large number of rules by creating additional security groups, you still may want to add more than 60 rules in a single group. There are many scenarios where this makes more sense than arbitrarily adding (and managing) new groups. For example, you might have a production instance that needs updates from several third-party partners. You also need to periodically change and update the technologies this instance relies on, so you’d like to keep its rules in a single security group. This reduces misconfiguration risk by keeping all the relevant rules in one place – not spread out across multiple groups. To overcome this limit, you need to reduce the number of IP addresses that the security group filters. You can do this by deploying a third-party solution that allows security rules to perform DNS resolution. This eliminates the need for AWS to resolve the domain name. Since AWS security groups can’t compute domain names on their own, you’ll need to deploy a third-party NAT gateway on your public VPC to filter outbound traffic in this way. Once you do this, you can write rules that filter outgoing connections based on their domain name. This effectively bypasses the 60 IP limit because you are not referring to specific IP addresses. At the same time, it simplifies management and makes rules much easier to read and understand. Instead of looking up and adding all of Github’s API IP addresses, you can write rules that reference the domain “Github.com”. If Github decides to change its IP infrastructure, your security rules will automatically reference the new addresses – you won’t have to go back and update them. The earlier you address AWS security group limits, the better There is an unlimited number of ways you can arrange your security groups and Network ACLs. Even in a small environment, the prospect may seem daunting. However, the flexibility Amazon provides to its cloud users is a valuable security feature. Those who go the process enjoy clear security performance benefits. If you start to planning for the architecture of your security and filtering policies early, you’ll be better equipped to scale those policies upwards as your organization grows. This will prevent security processes from becoming a growth bottleneck and maintain a high level of efficiency even as those policies become larger and more complex. See me explain this issue in person in my new whiteboard video: Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Cloud Security Checklist: Key Steps and Best Practices

    A Comprehensive Cloud Security Checklist for Your Cloud Environment There’s a lot to consider when securing your cloud environment.... Cloud Security Cloud Security Checklist: Key Steps and Best Practices Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 7/21/23 Published A Comprehensive Cloud Security Checklist for Your Cloud Environment There’s a lot to consider when securing your cloud environment. Threats range from malware to malicious attacks, and everything in between. With so many threats, a checklist of cloud security best practices will save you time. First we’ll get a grounding in the top cloud security risks and some key considerations. The Top 5 Security Risks in Cloud Computing Understanding the risks involved in cloud computing is a key first step. The top 5 security risks in cloud computing are: 1. Limited visibility Less visibility means less control. Less control could lead to unauthorized practices going unnoticed. 2. Malware Malware is malicious software, including viruses, ransomware, spyware, and others. 3. Data breaches Breaches can lead to financial losses due to regulatory fines and compensation. They may also cause reputational damage. 4. Data loss The consequences of data loss can be severe, especially it includes customer information. 5. Inadequate cloud security controls If cloud security measures aren’t comprehensive, they can leave you vulnerable to cyberattacks. Key Cloud Security Checklist Considerations 1. Managing User Access and Privileges Properly managing user access and privileges is a critical aspect of cloud infrastructure. Strong access controls mean only the right people can access sensitive data. 2. Preventing Unauthorized Access Implementing stringent security measures, such as firewalls, helps fortify your environment. 3. Encrypting Cloud-Based Data Assets Encryption ensures that data is unreadable to unauthorized parties. 4. Ensuring Compliance Compliance with industry regulations and data protection standards is crucial. 5. Preventing Data Loss Regularly backing up your data helps reduce the impact of unforeseen incidents. 6. Monitoring for Attacks Security monitoring tools can proactively identify suspicious activities, and respond quickly. Cloud Security Checklist Understand cloud security risks Establish a shared responsibility agreement with your cloud services provider (CSP) Establish cloud data protection policies Set identity and access management rules Set data-sharing restrictions Encrypt sensitive data Employ a comprehensive data backup and recovery plan Use malware protection Create an update and patching schedule Regularly assess cloud security Set up security monitoring and logging Adjust cloud security policies as new issues emerge Let’s take a look at these in more detail. Full Cloud Security Checklist 1. Understand Cloud Security Risks 1a. Identify Sensitive Information First, identify all your sensitive information. This data could range from customer information to patents, designs, and trade secrets. 1b. Understand Data Access and Sharing Use access control measures, like role-based access control (RBAC), to manage data access. You should also understand and control how data is shared. One idea is to use data loss prevention (DLP) tools to prevent unauthorized data transfers. 1c. Explore Shadow IT Shadow IT refers to using IT tools and services without your company’s approval. While these tools can be more productive or convenient, they can pose security risks. 2. Establish a Shared Responsibility Agreement with Your Cloud Service Provider (CSP) Understanding the shared responsibility model in cloud security is essential. There are various models – IaaS, PaaS, or SaaS. Common CSPs include Microsoft Azure and AWS. 2a. Establish Visibility and Control It’s important to establish strong visibility into your operations and endpoints. This includes understanding user activities, resource usage, and security events. Using security tools gives you a centralized view of your secure cloud environment. You can even enable real-time monitoring and prompt responses to suspicious activities. Cloud Access Security Brokers (CASBs) or cloud-native security tools can be useful here. 2b. Ensure Compliance Compliance with relevant laws and regulations is fundamental. This could range from data protection laws to industry-specific regulations. 2c. Incident Management Despite your best efforts, security incidents can still occur. Having an incident response plan is a key element in managing the impact of any security events. This plan should tell team members how to respond to an incident. 3. Establish Cloud Data Protection Policies Create clear policies around data protection in the cloud . These should cover areas such as data classification, encryption, and access control. These policies should align with your organizational objectives and comply with relevant regulations. 3a. Data Classification You should categorize data based on its sensitivity and potential impact if breached. Typical classifications include public, internal, confidential, and restricted data. 3b. Data Encryption Encryption protects your data in the cloud and on-premises. It involves converting your data so it can only be read by those who possess the decryption key. Your policy should mandate the use of strong encryption for sensitive data. 3c. Access Control Each user should only have the access necessary to perform their job function and no more. Policies should include password policies and changes of workloads. 4. Set Identity and Access Management Rules 4a. User Identity Management Identity and Access Management tools ensure only the right people access your data. Using IAM rules is critical to controlling who has access to your cloud resources. These rules should be regularly updated. 4b. 2-Factor and Multi-Factor Authentication Two-factor authentication (2FA) and multi-factor authentication (MFA) are useful tools. You reduce the risk by implementing 2FA or MFA, even if a password is compromised. 5. Set Data Sharing Restrictions 5a. Define Data Sharing Policies Define clear data-sharing permissions. These policies should align with the principles of least privilege and need-to-know basis. 5b. Implement Data Loss Prevention (DLP) Measures Data Loss Prevention (DLP) tools can help enforce data-sharing policies. These tools monitor and control data movements in your cloud environment. 5c. Audit and Review Data Sharing Activities Regularly review and audit your data-sharing activities to ensure compliance. Audits help identify any inappropriate data sharing and provide insights for improvement. 6. Encrypt Sensitive Data Data encryption plays a pivotal role in safeguarding your sensitive information. It involves converting your data into a coded form that can only be read after it’s been decrypted. 6a. Protect Data at Rest This involves transforming data into a scrambled form while it’s in storage. It ensures that even if your storage is compromised, the data remains unintelligible. 6b. Data Encryption in Transit This ensures that your sensitive data remains secure while it’s being moved. This could be across the internet, over a network, or between components in a system. 6c. Key Management Managing your encryption keys is just as important as encrypting the data itself. Keys should be stored securely and rotated regularly. Additionally, consider using hardware security modules (HSMs) for key storage. 6d. Choose Strong Encryption Algorithms The strength of your encryption depends significantly on the algorithms you use. Choose well-established encryption algorithms. Advanced Encryption Standard (AES) or RSA are solid algorithms. 7. Employ a Comprehensive Data Backup and Recovery Plan 7a. Establish a Regular Backup Schedule Install a regular backup schedule that fits your organization’s needs . The frequency of backups may depend on how often your data changes. 7b. Choose Suitable Backup Methods You can choose from backup methods such as snapshots, replication, or traditional backups. Each method has its own benefits and limitations. 7c. Implement a Data Recovery Strategy In addition to backing up your data, you need a solid strategy for restoring that data if a loss occurs. This includes determining recovery objectives. 7d. Test Your Backup and Recovery Plan Regular testing is crucial to ensuring your backup and recovery plan works. Test different scenarios, such as recovering a single file or a whole system. 7e. Secure Your Backups Backups can become cybercriminals’ targets, so they also need to be secured. This includes using encryption to protect backup data and implementing access controls. 8. Use Malware Protection Implementing robust malware protection measures is pivotal in data security. It’s important to maintain up-to-date malware protection and routinely scan your systems. 8a. Deploy Antimalware Software Deploy antimalware software across your cloud environment. This software can detect, quarantine, and eliminate malware threats. Ensure the software you select can protect against a wide range of malware. 8b. Regularly Update Malware Definitions Anti-malware relies on malware definitions. However, cybercriminals continuously create new malware variants, so these definitions become outdated quickly. Ensure your software is set to automatically update. 8c. Conduct Regular Malware Scans Schedule regular malware scans to identify and mitigate threats promptly. This includes full system scans and real-time scanning. 8d. Implement a Malware Response Plan Develop a comprehensive malware response plan to ensure you can address any threats. Train your staff on this plan to respond efficiently during a malware attack. 8e. Monitor for Anomalous Activity Continuously monitor your systems for any anomalous activity. Early detection can significantly reduce the potential damage caused by malware. 9. Create an Update and Patching Schedule 9a. Develop a Regular Patching Schedule Develop a consistent schedule for applying patches and updates to your cloud applications. For high-risk vulnerabilities, consider implementing patches as soon as they become available. 9b. Maintain an Inventory of Software and Systems You need an accurate inventory of all software and systems to manage updates and patches. This inventory should include the system version, last update, and any known vulnerabilities. 9c. Automation Where Possible Automating the patching process can help ensure that updates are applied consistently. Many cloud service providers offer tools or services that can automate patch management. 9d. Test Patches Before Deployment Test updates in a controlled environment to ensure work as intended. This is especially important for patches to critical systems. 9e. Stay Informed About New Vulnerabilities and Patches Keep abreast of new vulnerabilities and patches related to your software and systems. Being aware of the latest threats and solutions can help you respond faster. 9f. Update Security Tools and Configurations Don’t forget to update your cloud security tools and configurations regularly. As your cloud environment evolves, your security needs may change. 10. Regularly Assess Cloud Security 10a. Set up cloud security assessments and audits Establish a consistent schedule for conducting cybersecurity assessments and security audits. Audits are necessary to confirm that your security responsibilities align with your policies. These should examine configurations, security controls, data protection and incident response plans. 10b. Conduct Penetration Testing Penetration testing is a proactive approach to identifying vulnerabilities in your cloud environment. These are designed to uncover potential weaknesses before malicious actors do. 10c. Perform Risk Assessments These assessments should cover a variety of technical, procedural, and human risks. Use risk assessment results to prioritize your security efforts. 10d. Address Assessment Findings After conducting an assessment or audit, review the findings and take appropriate action. It’s essential to communicate any changes effectively to all relevant personnel. 10f. Maintain Documentation Keep thorough documentation of each assessment or audit. Include the scope, process, findings, and actions taken in response. 11. Set Up Security Monitoring and Logging 11a. Intrusion Detection Establish intrusion detection systems (IDS) to monitor your cloud environment. IDSs operate by recognizing patterns or anomalies that could indicate unauthorized intrusions. 11b. Network Firewall Firewalls are key components of network security. They serve as a barrier between secure internal network traffic and external networks. 11c. Security Logging Implement extensive security logging across your cloud environment. Logs record the events that occur within your systems. 11d. Automate Security Alerts Consider automating security alerts based on triggering events or anomalies in your logs. Automated alerts can ensure that your security team responds promptly. 11e. Implement Information Security and Event Management (SIEM) System A Security Information and Event Management (SIEM) system can your cloud data. It can help identify patterns, security breaches, and generate alerts. It will give a holistic view of your security posture. 11f. Regular Review and Maintenance Regularly review your monitoring and logging practices to ensure they remain effective. as your cloud environment and the threat landscape evolve. 12. Adjust Cloud Security Policies as New Issues Emerge 12a. Regular Policy Reviews Establish a schedule for regular review of your cloud security policies. Regular inspections allow for timely updates to keep your policies effective and relevant. 12b. Reactive Policy Adjustments In response to emerging threats or incidents, it may be necessary to adjust on an as-needed basis. Reactive adjustments can help you respond to changes in the risk environment. 12c. Proactive Policy Adjustments Proactive policy adjustments involve anticipating future changes and modifying your policies accordingly. 12d. Stakeholder Engagement Engage relevant stakeholders in the policy review and adjustment process. This can include IT staff, security personnel, management, and even end-users. Different perspectives can provide valuable insights. 12e. Training and Communication It’s essential to communicate changes whenever you adjust your cloud security policies. Provide training if necessary to ensure everyone understands the updated policies. 12f. Documentation and Compliance Document any policy adjustments and ensure they are in line with regulatory requirements. Updated documentation can serve as a reference for future reviews and adjustments. Use a Cloud Security Checklist to Protect Your Data Today Cloud security is a process, and using a checklist can help manage risks. Companies like Prevasio specialize in managing cloud security risks and misconfigurations, providing protection and ensuring compliance. Secure your cloud environment today and keep your data protected against threats. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Evolving network security: AlgoSec’s technological journey and its critical role in application connectivity

    Over nearly two decades, AlgoSec has undergone a remarkable evolution in both technology and offerings. Initially founded with the... Application Connectivity Management Evolving network security: AlgoSec’s technological journey and its critical role in application connectivity Nitin Rajput 2 min read Nitin Rajput Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/13/23 Published Over nearly two decades, AlgoSec has undergone a remarkable evolution in both technology and offerings. Initially founded with the mission of simplifying network security device management, the company has consistently adapted to the changing landscape of cybersecurity. Proactive Network Security In its early years, AlgoSec focused on providing a comprehensive view of network security configurations, emphasizing compliance, risk assessment, and optimization. Recognizing the limitations of a reactive approach, AlgoSec pivoted to develop a workflow-based ticketing system, enabling proactive assessment of traffic changes against risk and compliance. Cloud-Native Security As organizations transitioned to hybrid and cloud environments, AlgoSec expanded its capabilities to include cloud-native security controls. Today, AlgoSec seamlessly manages public cloud platforms such as Cisco ACI, NSX, AWS, GCP, and Azure, ensuring a unified security posture across diverse infrastructures. Application Connectivity Discovery A recent breakthrough for AlgoSec is its focus on helping customers navigate the challenges of migrating applications to public or private clouds. The emphasis lies in discovering and mapping application flows within the network infrastructure, addressing the crucial need for maintaining control and communication channels. This discovery process is facilitated by AlgoSec’s built-in solution or by importing data from third-party micro-segmentation solutions like Cisco Secure Workloads, Guardicore, or Illumio. Importance of Application Connectivity Why is discovering and mapping application connectivity crucial? Applications are the lifeblood of organizations, driving business functions and, from a technical standpoint, influencing decisions related to firewall rule decommissioning, cloud migration, micro-segmentation, and zero-trust frameworks. Compliance requirements further emphasize the necessity of maintaining a clear understanding of application connectivity flows. Enforcing Micro-Segmentation with AlgoSec Micro-segmentation, a vital network security approach, aims to secure workloads independently by creating security zones per machine. AlgoSec plays a pivotal role in enforcing micro-segmentation by providing a detailed understanding of application connectivity flows. Through its discovery modules, AlgoSec ingests data and translates it into access controls, simplifying the management of north-south and east-west traffic within SDN-based micro-segmentation solutions. Secure Application Connectivity Migration In the complex landscape of public cloud and application migration, AlgoSec emerges as a solution to ensure success. Recognizing the challenges organizations face, AlgoSec’s AutoDiscovery capabilities enable a smooth migration process. By automatically generating security policy change requests, AlgoSec simplifies a traditionally complex and risky process, ensuring business services remain uninterrupted while meeting compliance requirements. In conclusion, AlgoSec’s technological journey reflects a commitment to adaptability and innovation, addressing the ever-changing demands of network security. From its origins in network device management to its pivotal role in cloud security and application connectivity, AlgoSec continues to be a key player in shaping the future of cybersecurity. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Network Security Threats & Solutions for Cybersecurity Leaders

    Modern organizations face a wide and constantly changing range of network security threats, and security leaders must constantly update... Network Security Network Security Threats & Solutions for Cybersecurity Leaders Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/11/24 Published Modern organizations face a wide and constantly changing range of network security threats, and security leaders must constantly update their security posture against them. As threat actors change their tactics, techniques, and procedures, exploit new vulnerabilities , and deploy new technologies to support their activities — it’s up to security teams to respond by equipping themselves with solutions that address the latest threats. The arms race between cybersecurity professionals and cybercriminals is ongoing. During the COVID-19 pandemic, high-profile ransomware attacks took the industry by storm. When enterprise security teams responded by implementing secure backup functionality and endpoint detection and response, cybercriminals shifted towards double extortion attacks. The cybercrime industry constantly invests in new capabilities to help hackers breach computer networks and gain access to sensitive data. Security professionals must familiarize themselves with the latest network security threats and deploy modern solutions that address them. What are the Biggest Network Security Threats? 1. Malware-based Cyberattacks Malware deserves a category of its own because so many high-profile attacks rely on malicious software to work. These include everything from the Colonial Pipeline Ransomware attack to historical events like Stuxnet . Broadly speaking, cyberattacks that rely on launching malicious software on computer systems are part of this category. There are many different types of malware-based cyberattacks, and they vary widely in scope and capability. Some examples include: Viruses. Malware that replicates itself by inserting its own code into other applications are called viruses. They can spread across devices and networks very quickly. Ransomware. This type of malware focuses on finding and encrypting critical data on the victim’s network and then demanding payment for the decryption key. Cybercriminals typically demand payment in the form of cryptocurrency, and have developed a sophisticated industrial ecosystem for conducting ransomware attacks. Spyware. This category includes malware variants designed to gather information on victims and send it to a third party without your consent. Sometimes cybercriminals do this as part of a more elaborate cyberattack. Other times it’s part of a corporate espionage plan. Some spyware variants collect sensitive information that cybercriminals value highly. Trojans. These are malicious applications disguised as legitimate applications. Hackers may hide malicious code inside legitimate software in order to trick users into becoming victims of the attack. Trojans are commonly hidden as an email attachment or free-to-download file that launches its malicious payload after being opened in the victim’s environment. Fileless Malware. This type of malware leverages legitimate tools native to the IT environment to launch an attack. This technique is also called “living off the land” because hackers can exploit applications and operating systems from inside, without having to download additional payloads and get them past firewalls. 2. Network-Based Attacks These are attacks that try to impact network assets or functionality, often through technical exploitations. Network-based attacks typically start at the edge of the network, where it sends and receives traffic to the public internet. Distributed Denial-of-Service (DDoS) Attacks. These attacks overwhelm network resources, leading to downtime and service unavailability, and in some cases, data loss . To launch DDoS attacks, cybercriminals must gain control over a large number of compromised devices and turn them into bots. Once thousands (or millions) of bots using unique IP addresses request server resources, the server breaks down and stops functioning. Man-in-the-Middle (MitM) Attacks: These attacks let cybercriminals eavesdrop on communications between two parties. In some cases, they can also alter the communications between both parties, allowing them to plan and execute more complex attacks. Many different types of man-in-the-middle attacks exist, including IP spoofing, DNS spoofing, SSL stripping, and others. 3. Social Engineering and Phishing These attacks are not necessarily technical exploits. They focus more on abusing the trust that human beings have in one another. Usually, they involve the attacker impersonating someone in order to convince the victim to give up sensitive data or grant access to a secure asset. Phishing Attacks. This is when hackers create fake messages telling victims to take some kind of action beneficial to the attacker. These deceptive messages can result in the theft of login credentials, credit card information, or more. Most major institutions are regularly impersonated by hackers running phishing scams, like the IRS . Social Engineering Attacks. These attacks use psychological manipulation to trick victims into divulging confidential information. A common example might be a hacker contacting a company posing as a third-party technology vendor, asking for access to a secure system, or impersonating the company CEO and demanding an employee pay a fictitious invoice. 4. Insider Threats and Unauthorized Access These network security threats are particularly dangerous because they are very difficult to catch. Most traditional security tools are not configured to detect malicious insiders, who generally have permission to access sensitive data and assets. Insider Threats. Employees, associates, and partners with access to sensitive data may represent severe security risks. If an authorized user decides to steal data and sell it to a hacker or competitor, you may not be able to detect their attack using traditional security tools. That’s what makes insider threats so dangerous, because they are often undetectable. Unauthorized Access. This includes a broad range of methods used to gain illegal access to networks or systems. The goal is usually to steal data or alter it in some way. Attackers may use credential-stuffing attacks to access sensitive networks, or they can try brute force methods that involve automatically testing millions of username and password combinations until they get the right one. This often works because people reuse passwords that are easy to remember. Solutions to Network Security Threats Each of the security threats listed above comes with a unique set of risks, and impacts organizations in a unique way. There is no one-size-fits-all solution to navigating these risks. Every organization has to develop a cybersecurity policy that meets its specific needs. However, the most secure organizations usually share the following characteristics. Fundamental Security Measures Well-configured Firewalls. Firewalls control incoming and outgoing network traffic based on security rules. These rules can deny unauthorized traffic attempting to connect with sensitive network assets and block sensitive information from traveling outside the network. In each case, robust configuration is key to making the most of your firewall deployment . Choosing a firewall security solution like AlgoSec can dramatically improve your defenses against complex network threats. Anti-malware and Antivirus Software. These solutions detect and remove malicious software throughout the network. They run continuously, adapting their automated scans to include the latest threat detection signatures so they can block malicious activity before it leads to business disruption. Since these tools typically rely on threat signatures, they cannot catch zero-day attacks that leverage unknown vulnerabilities. Advanced Protection Tools Intrusion Prevention Systems. These security tools monitor network traffic for behavior that suggests unauthorized activity. When they find evidence of cyberattacks and security breaches, they launch automated responses that block malicious activity and remove unauthorized users from the network. Network Segmentation. This is the process of dividing networks into smaller segments to control access and reduce the attack surface. Highly segmented networks are harder to compromise because hackers have to repeatedly pass authentication checks to move from one network zone to another. This increases the chance that they fail, or generate activity unusual enough to trigger an alert. Security and Information Event Management (SIEM) platforms. These solutions give security analysts complete visibility into network and application activity across the IT environment. They capture and analyze log data from firewalls, endpoint devices, and other assets and correlate them together so that security teams can quickly detect and respond to unauthorized activity, especially insider threats. Endpoint Detection and Response (EDR). These solutions provide real-time visibility into the activities of endpoint devices like laptops, desktops, and mobile phones. They monitor these devices for threat indicators and automatically respond to identified threats before they can reach the rest of the network. More advanced Extended Detection and Response (XDR) solutions draw additional context and data from third party security tools and provide in-depth automation . Authentication and Access Control Multi-Factor Authentication (MFA). This technology enhances security by requiring users to submit multiple forms of verification before accessing sensitive data. This makes it useful against phishing attacks, social engineering, and insider threats, because hackers need more than just a password to gain entry to secure networks. MFA also plays an important role in Zero Trust architecture. Strong Passwords and Access Policies. There is no replacement for strong password policies and securely controlling user access to sensitive data. Security teams should pay close attention to password policy compliance, making sure employees do not reuse passwords across accounts and avoid simple memory hacks like adding sequential numbers to existing passwords. Preventing Social Engineering and Phishing While SIEM platforms, MFA policies and strong passwords go a long way towards preventing social engineering and phishing attacks, there are a few additional security measures worth taking to reduce these risks: Security Awareness Training. Leverage a corporate training LMS to educate employees about phishing and social engineering tactics. Phishing simulation exercises can help teach employees how to distinguish phishing messages from legitimate ones, and pinpoint the users at highest risk of falling for a phishing scam. Email Filtering and Verification: Email security tools can identify and block phishing emails before they arrive in the inbox. They often rely on scanning the reputation of servers that send incoming emails, and can detect discrepancies in email metadata that suggest malicious intent. Even if these solutions generally can’t keep 100% of malicious emails out of the inbox, they significantly reduce email-related threat risks. Dealing with DDoS and MitM Attacks These technical exploits can lead to significant business disruption, especially when undertaken by large-scale threat actors with access to significant resources. Your firewall configuration and VPN policies will make the biggest difference here: DDoS Prevention Systems. Protect against distributed denial of service attacks by implementing third-party DDoS prevention solutions, deploying advanced firewall configurations, and using load balancers. Some next generation firewalls (NGFWs) can increase protection against DDoS attacks by acting as a handshake proxy and dropping connection requests that do not complete the TCP handshake process. VPNs and Encryption: VPNs provide secure communication channels that prevent MitM attacks and data eavesdropping. Encrypted traffic can only be intercepted by attackers who go through the extra step of obtaining the appropriate decryption key. This makes it much less likely they focus on your organization instead of less secure ones that are easier to target. Addressing Insider Threats Insider threats are a complex security issue that require deep, multi-layered solutions to address. This is especially true when malicious insiders are actually employees with legitimate user credentials and privileges. Behavioral Auditing and Monitoring: Regular assessments and monitoring of user activities and network traffic are vital for detecting insider threats . Security teams need to look beyond traditional security deployments and gain insight into user behaviors in order to catch authorized users doing suspicious things like escalating their privileges or accessing sensitive data they do not normally access. Zero Trust Security Model. Assume no user or device is trustworthy until verified. Multiple layers of verification between highly segmented networks — with multi-factor authentication steps at each layer — can make it much harder for insider threats to steal data and conduct cyberattacks. Implementing a Robust Security Strategy Directly addressing known threats should be just one part of your cybersecurity strategy. To fully protect your network and assets from unknown risks, you must also implement a strong security posture that can address risks associated with new and emerging cyber threats. Continual Assessment and Improvement The security threat landscape is constantly changing, and your security posture must adapt and change in response. It’s not always easy to determine exactly how your security posture should change, which is why forward-thinking security leaders periodically invest in vulnerability assessments designed to identify security vulnerabilities that may have been overlooked. Once you have a list of security weaknesses you need to address, you can begin the process of proactively addressing them by configuring your security tech stack and developing new incident response playbooks. These playbooks will help you establish a coordinated, standardized response to security incidents and data breaches before they occur. Integration of Security Tools Coordinating incident response plans isn’t easy when every tool in your tech stack has its own user interface and access control permissions. You may need to integrate your security tools into a single platform that allows security teams to address issues across your entire network from a single point of reference. This will help you isolate and address security issues on IoT devices and mobile devices without having to dedicate a particular team member exclusively to that responsibility. If a cyberattack that targets mobile apps occurs, your incident response plan won’t be limited by the bottleneck of having a single person with sufficient access to address it. Similarly, highly integrated security tools that leverage machine learning and automation can enhance the scalability of incident response and speed up incident response processes significantly. Certain incident response playbooks can be automated entirely, providing near-real-time protection against sophisticated threats and freeing your team to focus on higher-impact strategic initiatives. Developing and Enforcing Security Policies Developing and enforcing security policies is one of the high-impact strategic tasks your security team should dedicate a great deal of time and effort towards. Since the cybersecurity threat landscape is constantly changing, you must commit to adapting your policies in response to new and emerging threats quickly. That means developing a security policy framework that covers all aspects of network and data security. Similarly, you can pursue compliance with regulatory standards that ensure predictable outcomes from security incidents. Achieving compliance with standards like NIST, CMMC, PCI-DSS, and HIPPA can help you earn customers’ trust and open up new business opportunities. AlgoSec: Your Partner in Network Security Protecting against network threats requires continuous vigilance and the ability to adapt to fast-moving changes in the security landscape. Every level of your organization must be engaged in security awareness and empowered to report potential security incidents. Policy management and visibility platforms like AlgoSec can help you gain control over your security tool configurations. This enhances the value of continuous vigilance and improvement, and boosts the speed and accuracy of policy updates using automation. Consider making AlgoSec your preferred security policy automation and visibility platform. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Improve visibility and identify risk across your Google Cloud environments with AlgoSec Cloud

    With expertise in data management, search algorithms, and AI, Google has created a cloud platform that excels in both performance and... Hybrid Cloud Security Management Improve visibility and identify risk across your Google Cloud environments with AlgoSec Cloud Joseph Hallman 2 min read Joseph Hallman Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 9/12/23 Published With expertise in data management, search algorithms, and AI, Google has created a cloud platform that excels in both performance and efficiency. The advanced machine learning, global infrastructure, and comprehensive suite of services available in Google Cloud demonstrates Google’s commitment to innovation. Many companies are leveraging these capabilities to explore new possibilities and achieve remarkable outcomes in the cloud. When large companies decide to locate or move critical business applications to the cloud, they often worry about security. Making decisions to move certain applications to the cloud should not create new security risks. Companies are concerned about things like hackers getting access to their data, unauthorized people viewing or tampering with sensitive information, and meeting compliance regulations. To address these concerns, it’s important for companies to implement strong security measures in the cloud, such as strict access controls, encrypting data, constantly monitoring for threats, and following industry security standards. Unfortunately, even with the best tools and safeguards in place it is hard to protect against everything. Human error plays a major part in this and can introduce threats with a few small mistakes in configuration files or security rules that can create unnecessary security risks. The CloudFlow solution from AlgoSec is a network security management solution designed for cloud environments. It provides clear visibility, risk analysis, and helps identify unused rules to help with policy cleanup across multi-cloud deployments. With CloudFlow, organizations can manage security policies, better understand risk, and enhance their overall security in the cloud. It offers centralized visibility, helps with policy management, and provides detailed risk assessment. With Algosec Cloud, and support for Google Cloud, many companies are gaining the following new capabilities: Improved visibility Identifying and reduce risk Generating detailed risk reports Optimizing existing policies Integrating with other cloud providers and on-premise security devices Improve overall visibility into your cloud environments Gain clear visibility into your Google Cloud, Inventory, and network risks. In addition, you can see all the rules impacting your Google Cloud VPCs in one place. View network and inherited policies across all your Google Cloud Projects in one place. Using the built-in search tool and filters it is easy to search and locate policies based on the project, region, and VPC network. View all the rules protecting your Google Cloud VPCs in one place. View VPC firewall rules and the inherited rules from hierarchical firewall policies Gain visibility for your security rules and policies across all of your Google Cloud projects in one place. Identify and Reduce Risk in your Cloud Environments CloudFlow includes the ability to identify risks in your Google Cloud environment and their severity. Look across policies for risks and then drill down to look at specific rules and the affected assets. For any rule, you can conveniently view the risk description, the risk remediation suggestion and all its affected assets. Quickly identify policies that include risk Look at risky rules and suggested remediation Understand the assets that are affected Identify risky rules so you can confidently remove them and avoid data breaches. Tip: Hover over the: Description icon : to view the risk description. Remediation icon: to view the remediation suggestion. Quickly create and share detailed risk reports From the left menu select Risk and then use the built-in filters to narrow down your selection and view specific risk based on cloud type, account, region, tags, and severity. Once the selections are made a detailed report can be automatically generated for you by clicking on the pdf report icon in the top right of the screen. Generate detailed risk reports to share in a few clicks. Optimize Existing Policies Unused rules represent a common security risk and create policy bloat that can complicate both cloud performance and connectivity. View unused rules on the Overview page, for each project you can see the number of Google Cloud rules not being used based on a defined analysis period. This information can assist in cleaning the policies and reducing the attack surface. Select analysis period Identify unused rule to help optimize your cloud security policies Quickly locate rules that are not in use to help reduce your attack surface. Integrate with other cloud providers and on-premise security devices Manage Google Cloud projects, other cloud solutions, and on-premise firewall devices by using AlgoSec Cloud along with the AlgoSec Security Management Suite (ASMS). Integrate with the full suite of solutions from AlgoSec for a powerful and comprehensive way to manage applications connectivity across your entire hybrid environment. CloudFlow plus ASMS provides clear visibility, risk identification, and other capabilities across large complex hybrid networks. Resources- Quick overview video about CloudFlow and Google Cloud support For more details about AlgoSec Security Management Suite or to schedule a demo please visit- www.algosec.com Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts !

  • AlgoSec | Understanding Security Considerations in IaaS/PaaS/SaaS Deployments

    Knowing how to select and position security capabilities in different cloud deployment models is critical to comprehensive security... Cloud Security Understanding Security Considerations in IaaS/PaaS/SaaS Deployments Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/24/22 Published Knowing how to select and position security capabilities in different cloud deployment models is critical to comprehensive security across your organization. Implementing the right pattern allows you to protect the confidentiality, integrity, and availability of cloud data assets. It can also improve incident response to security threats. Additionally, security teams and cloud security architects no longer have to rely on pre-set security templates or approaches built for on-premises environments. Instead, they must adapt to the specific security demands of the cloud and integrate them with the overall cloud strategy. This can be accomplished by re-evaluating defense mechanisms and combining cloud-native security and vendor tools. Here, we’ll break down the security requirements and best practices for cloud service models like IaaS, PaaS, and SaaS. Do you have cloud security architects on board? We’ll also cover their roles and the importance of leveraging native security tools specific to each model. Managing Separation of Responsibilities with the Cloud Service Provider Secure cloud deployments start with understanding responsibilities. Where do you stand, and what is expected of you? There are certain security responsibilities the cloud security provider takes care of and those that the customer handles. This division of responsibilities means adjusting focus and using different measures to ensure security is necessary. Therefore, organizations must consider implementing compensating controls and alternative security measures to make up for any limitations in the cloud service provider’s security offerings. Security Considerations for SaaS (Software-as-a-Service) Deployments The specific security requirements in SaaS deployments may vary between services. However, it’s important to consider the following areas: Data protection During cloud deployments, protecting data assets is a tough nut to crack for many organizations. As a SaaS provider, ensuring data protection is crucial because you handle and store sensitive customer data. Encryption must be implemented for data in transit and at rest. Protecting data at rest is the cloud provider’s responsibility, whereas you are responsible for data in transit. The cloud provider implements security measures like encryption, access controls, and physical security to protect the data stored in their infrastructure. On the other hand, it’s your responsibility to implement secure communication protocols like encryption, ensuring data remains protected when it moves between your SaaS application. Additionally, best practice solutions may offer you the option of managing your encryption keys so that cloud operations staff cannot decrypt customer data. Interfacing with the Cloud Service There are a number of security considerations to keep in mind when interacting with a SaaS deployment. These include validating data inputs, implementing secure APIs, and securing communication channels. It’s crucial to use secure protocols like HTTPS and to ensure that the necessary authentication and authorization mechanisms are in place. You may also want to review and monitor access logs frequently to spot and address any suspicious activity. Application Security in SaaS During SaaS deployments, it’s essential to ensure application security. For instance, secure coding practices, continuous vulnerability assessments, and comprehensive application testing all contribute to effective SaaS application security. Cross-site scripting (XSS) and SQL injection are some of the common web application cyber-attacks today. You can improve the application’s security posture by implementing the right input validation, regular security patches from the SaaS provider, and web application firewalls (WAFs). Cloud Identity and Access Controls Here, you must define how cloud services will integrate and federate with existing enterprise identity and access management (IAM) systems. This ensures a consistent and secure access control framework. Implementing strong authentication mechanisms like multifactor authentication (MFA) and enforcing proper access controls based on roles and responsibilities are necessary security requirements. You should also consider using Cloud Access Security Broker (CASB) tools to provide adaptive and risk-based access controls. Regulatory Compliance Using a cloud service doesn’t exempt one from regulatory compliance, and cloud architects must design the SaaS architecture to align with these requirements. But why are these stringent requirements there in the first place? The purpose of these regulations is to protect consumer privacy by enforcing confidentiality, integrity, availability, and accountability. So, achieving compliance means you meet these regulations. It demonstrates that your applications and tech stack maintain secure privacy levels. Failure to comply could cost money in the form of fines, legal action, and a damaged reputation. You don’t want that. Security Considerations for PaaS (Platform-as-a-Service) Deployments PaaS security considerations during deployments will address all the SaaS areas. But as a PaaS customer, there are slight differences you should know. For example, more options exist to configure how data is protected and who can do what with it. As such, the responsibility of user permissions may be given to you. On the other hand, some PaaS providers may have built-in tools and mechanisms for managing user permissions. So, what are the other key areas you want to address to ensure a secure environment for PaaS deployments? We’ll start with the application security. Application Security The customer is responsible for securing the applications they build and deploy on the PaaS platform. Securing application platforms is necessary, and cloud architects must ensure this from the design and development stage. So, what do you do to ensure application security? It all starts from the onset. From secure coding practices, addressing application vulnerabilities, and conducting regular security testing. You’ll often find that most security vulnerabilities are introduced from the early stages of software development. If you can identify and fix potential flaws using penetration testing and threat modeling practices, you’re on your way to successful deployment. Data Security PaaS cloud security deployments offer more flexibility and allow customers control over their data and user entitlements. What this means is you can build and deploy your own applications on the platform. You can configure security measures and controls within your applications by defining who has access to applications, what they can do, and how data is protected. Here, cloud security architects and security teams can ensure data classification and access controls, determining appropriate encryption keys management practices, secure data integration and APIs, and data governance. Ultimately, configuring data protection mechanisms and user permissions provides customers with greater customization and control. Platform Security The platform itself, including the operating system, underlying infrastructure, data centers, and middleware, need to be protected. This is the responsibility of the PaaS provider. They must ensure that the components that keep the platform up are functional at all times. Network Security In PaaS environments, identity and roles are primarily used for network security to determine access to resources and data in the PaaS platform. As such, the most important factor to consider in this case is verifying the user identity and managing access based on their roles and permissions. Rather than relying on traditional network security measures like perimeter controls, IDS/IPS, and traffic monitoring, there is a shift to user-centric access controls. Security Considerations for IaaS (Infrastructure-as-a-Service) Cloud Deployments When it comes to application and software security, IaaS security during cloud deployment is similar. If you’re an IaaS customer, there are slight differences in how IaaS cloud deployment is handled. For example, while the cloud provider handles the hypervisor or virtualized layer, everything else is the customers’ responsibility. So, you must secure the cloud deployment by implementing appropriate security measures to safeguard their applications and data. Due to different deployment patterns, some security tools that work well for SaaS may not be suitable for IaaS. For example, we discussed how CASB could be excellent for cloud identity, data, and access controls in SaaS applications. However, this may not be effective in IaaS environments. Your cloud architects and security teams must understand these differences when deploying IaaS. They should consider alternative or additional security measures in certain areas to ensure more robust security during cloud deployments. These areas are: Access Management IaaS deployment requires you to consider several identity and access management (IAM) dimensions. For example, cloud architects must consider access to the operating system, including applications and middleware installed on them. Additionally, they must also consider privileged access, such as root or administrative access at the OS level. Keep in mind that IaaS has additional access layers. These consist of access to the IaaS console and other cloud provider features that may offer insights about or impact the operation of cloud resources. For example, key management and auditing and resource configuration and hardening. It’s important to clarify who has access to these areas and what they can do. Regular Patching There are more responsibilities for you. The IaaS customer is responsible for keeping workloads updated and maintained. This typically includes the OS itself and any additional software installed on the virtual machines. Therefore, cloud architects must apply the same vigilance to cloud workloads as they would to on-premises servers regarding patching and maintenance. This ensures proactive, consistent, and timely updates that ensure the security and stability of cloud workloads. Network Security IaaS customers must configure and manage security mechanisms within their virtual networks. This includes setting firewalls, using intrusion detection and intrusion prevention systems (IDS/IPS), establishing secure connections (VPN), and network monitoring. On the other hand, the cloud provider ensures network security for the underlying network infrastructure, like routers and switches. They also ensure physical security by protecting network infrastructure from unauthorized access. Data Protection While IaaS providers ensure the physical security of data centers, IaaS customers must secure their own data in the IaaS environment. They need to protect data stored in databases, virtual machines (VMs), and any other storage system provisioned by the IaaS provider. Some IaaS providers, especially large ones, offer encryption capabilities for the VMs created on their platform. This feature is typically free or low-priced. It’s up to you to decide whether managing your own encryption keys is more effective or to choose the provider’s offerings. If you decide to go for this feature, it’s important to clarify how encrypting data at rest may affect other services from the IaaS provider, such as backup and recovery. Leveraging Native Cloud Security Tools Just like the encryption feature, some cloud service providers offer a range of native tools to help customers enforce effective security. These tools are available for IaaS, PaaS, and SaaS cloud services. While customers may decide not to use them, the low financial and operational impact of native cloud security tools on businesses makes them a smart decision. It allows you to address several security requirements quickly and easily due to seamless control integration. However, it’s still important to decide which controls are useful and where they are needed. Conclusion Cloud security architecture is always evolving. And this continuous change makes cloud environments more complex and dynamic. From misconfigurations to data loss, many challenges can make secure cloud deployments for IaaS, PaaS, and SaaS services more challenging. Prevasio, an AlgoSec company, is your trusted cloud security partner that helps your organization streamline cloud deployments. Our cloud-native application provides increased risk visibility and control over security and compliance requirements. Contact us now to learn more about how you can expedite your cloud security operations. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Introduction to Cloud Risk Management for Enterprises

    Every business needs to manage risks. If not, they won’t be around for long. The same is true in cloud computing. As more companies move... Cloud Security Introduction to Cloud Risk Management for Enterprises Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/24/22 Published Every business needs to manage risks. If not, they won’t be around for long. The same is true in cloud computing. As more companies move their resources to the cloud, they must ensure efficient risk management to achieve resilience, availability, and integrity. Yes, moving to the cloud offers more advantages than on-premise environments. But, enterprises must remain meticulous because they have too much to lose. For example, they must protect sensitive customer data and business resources and meet cloud security compliance requirements. The key to these – and more – lies in cloud risk management. That’s why in this guide, we’ll cover everything you need to know about managing enterprise risk in cloud computing, the challenges you should expect, and the best ways to navigate it. If you stick around, we’ll also discuss the skills cloud architects need for risk management. What is Cloud Risk Management and Why is it Important? In cloud computing, risk management refers to the process of identifying, assessing, prioritizing, and mitigating the risks associated with cloud computing environments. It’s a process of being proactive rather than reactive. You want to identify and prevent an unexpected or dangerous event that can damage your systems before it happens. Most people will be familiar with Enterprise Risk Management (ERM). Organizations use ERM to prepare for and minimize risks to their finances, operations, and goals. The same concept applies to cloud computing. Cyber threats have grown so much in recent years that your organization is almost always a target. For example, a recent report revealed 80 percent of organizations experienced a cloud security incident in the past year. While cloud-based information systems have many security advantages, they may still be exposed to threats. Unfortunately, these threats are often catastrophic to your business operations. This is why risk management in cloud environments is critical. Through effective cloud risk management strategies, you can reduce the likelihood or impact of risks arising from cloud services. Types of Risks Managing risks is a shared responsibility between the cloud provider and the customer – you. While the provider ensures secure infrastructure, you need to secure your data and applications within that infrastructure. Some types of risks organizations face in cloud environments are: Data breaches are caused by unauthorized access to sensitive data and information stored in the cloud. Service disruptions caused by redundant servers can affect the availability of services to users. Non-compliance to regulatory requirements like CIS compliance , HIPAA, and GDPR. Insider threats like malicious insiders, cloud misconfigurations, and negligence. External threats like account hijacking and insecure APIs. But risk assessment and management aren’t always straightforward. You will face certain challenges – and we’ll discuss them below: Challenges Facing Enterprise Cloud Risk Management Most organizations often face difficulties when managing cloud or third-party/vendor risks. These risks are particularly associated with the challenges that cloud deployments and usage cause. Understanding the cloud security challenges sheds more light on your organization’s potential risks. The Complexity of Cloud Environments Cloud security is complex, particularly for enterprises. For example, many organisations leverage multi-cloud providers. They may also have hybrid environments by combining on-premise systems and private clouds with multiple public cloud providers. You’ll admit this poses more complexities, especially when managing configurations, security controls, and integrations across different platforms. Unfortunately, this means organizations leveraging the cloud will likely become dependent on cloud services. So, what happens when these services become unavailable? Your organisation may be unable to operate, or your customers can’t access your services. Thus, there’s a need to manage this continuity and lock-in risks. Lack of Visibility and Control Cloud consumers have limited visibility and control. First, moving resources to the public cloud means you’ll lose many controls you had on-premises. Cloud service providers don’t grant access to shared infrastructure. Plus, your traditional monitoring infrastructure may not work in the cloud. So, you can no longer deploy network taps or intrusion prevention systems (IPS) to monitor and filter traffic in real-time. And if you cannot directly access the data packets moving within the cloud or the information contained within them, you lack visibility or control. Lastly, cloud service providers may provide logs of cloud workloads. But this is far from the real deal. Alerts are never really enough. They’re not enough for investigations, identifying the root cause of an issue, and remediating it. Investigating, in this case, requires access to data packets, and cloud providers don’t give you that level of data. Compliance and Regulatory Requirements It can be quite challenging to comply with regulatory requirements. For instance, there are blind spots when traffic moves between public clouds or between public clouds and on-premises infrastructures. You can’t monitor and respond to threats like man-in-the-middle attacks. This means if you don’t always know where your data is, you risk violating compliance regulations. With laws like GDPR, CCPA, and other privacy regulations, managing cloud data security and privacy risks has never been more critical. Understanding Existing Systems and Processes Part of cloud risk management is understanding your existing systems and processes and how they work. Understanding the requirements is essential for any service migration, whether it is to the cloud or not. This must be taken into consideration when evaluating the risk of cloud services. How can you evaluate a cloud service for requirements you don’t know? Evolving Risks Organizations struggle to have efficient cloud risk management during deployment and usage because of evolving risks. Organizations often develop extensive risk assessment questionnaires based on audit checklists, only to discover that the results are virtually impossible to assess. While checklists might be useful in your risk assessment process, you shouldn’t rely on them. Pillars of Effective Cloud Risk Management – Actionable Processes Here’s how efficient risk management in cloud environments looks like: Risk Assessment and Analysis The first stage of every risk management – whether in cloud computing or financial settings – is identifying the potential risks. You want to answer questions like, what types of risks do we face? For example, are they data breaches? Unauthorized access to sensitive data? Or are they service disruptions in the cloud? The next step is analysis. Here, you evaluate the likelihood of the risk happening and the impact it can have on your organization. This lets you prioritize risks and know which ones have the most impact. For instance, what consequences will a data breach have on the confidentiality and integrity of the information stored in the cloud? Security Controls and Safeguards to Mitigate Risks Once risks are identified, it’s time to implement the right risk mitigation strategies and controls. The cloud provider will typically offer security controls you can select or configure. However, you can consider alternative or additional security measures that meet your specific needs. Some security controls and mitigation strategies that you can implement include: Encrypting data at rest and in transit to protect it from unauthorized access. For example, you could encrypt algorithms and implement secure key management practices that protect the information in the cloud while it’s being transmitted. Implementing accessing control and authentication measures like multi-factor authentication (MFA), role-based access control (RBAC), and privileged access management (PAM). These mechanisms ensure that only authorized users can access resources and data stored in the cloud. Network security and segmentation: Measures like firewalls, intrusion detection/intrusion prevention systems (IDS/IPS), and virtual private networks (VPN) will help secure network communications and detect/prevent malicious actors. On the other hand, network segmentation mechanisms help you set strict rules on the services permitted between accessible zones or isolated segments. Regulatory Compliance and Data Governance Due to the frequency and complexity of cyber threats, authorities in various industries are releasing and updating recommendations for cloud computing. These requirements outline best practices that companies must adhere to avoid and respond to cyber-attacks. This makes regulatory compliance an essential part of identifying and mitigating risks. It’s important to first understand the relevant regulations, such as PCI DSS, ISO 27001, GDPR, CCPA, and HIPAA. Then, understand each one’s requirements. For example, what are your obligations for security controls, breach notifications, and data privacy? Part of ensuring regulatory compliance in your cloud risk management effort is assessing the cloud provider’s capabilities. Do they meet the industry compliance requirements? What are their previous security records? Have you assessed their compliance documentation, audit reports, and data protection practices? Lastly, it’s important to implement data governance policies that prescribe how data is stored, handled, classified, accessed, and protected in the cloud. Continuous Monitoring and Threat Intelligence Cloud risks are constantly evolving. This could be due to technological advancements, revised compliance regulations and frameworks, new cyber-treats, insider threats like misconfigurations, and expanding cloud service models like Infrastructure-as-a-Service (IaaS). What does this mean for cloud computing customers like you? There’s an urgent need to conduct regular security monitoring and threat intelligence to address emerging risks proactively. It has to be an ongoing process of performing vulnerability scans of your cloud infrastructure. This includes log management, periodic security assessments, patch management, user activity monitoring, and regular penetration testing exercises. Incident Response and Business Continuity Ultimately, there’s still a chance your organization will face cyber incidents. Part of cloud risk management is implementing cyber incident response plans (CIRP) that help contain threats. Whether these incidents are low-level risks that were not prioritized or high-impact risks you missed, an incident response plan will ensure business continuity. It’s also important to gather evidence through digital forensics and analyze system artifacts after incidents. Backup and Recovery Implementing data backup and disaster recovery into your risk management ensures you minimize the impact of data loss or service disruptions. For example, backing up data and systems regularly is important. Some cloud services may offer redundant storage and versioning features, which can be valuable when your data is corrupted or accidentally deleted. Additionally, it’s necessary to document backup and recovery procedures to ensure consistency and guide architects. Best Practices for Effective Cloud Risk Management Achieving cloud risk management involves combining the risk management processes above, setting internal controls, and corporate governance. Here are some best practices for effective cloud risk management: 1. Careful Selection of Your Cloud Service Provider (CSP) Carefully select a reliable cloud service provider (CSP). You can do this by evaluating factors like contract clarity, ethics, legal liability, viability, security, compliance, availability, and business resilience. Note that it’s important to assess if the CSP relies on other service providers and adjust accordingly. 2. Establishing a Cloud Risk Management Framework Consider implementing cloud risk management frameworks for a structured approach to identifying, assessing, and mitigating risks. Some notable frameworks include: National Institute of Standards and Technology (NIST) Cloud Computing Risk Management Framework (CC RMF) ISO/IEC 27017 Cloud Security Alliance (CSA) Cloud Controls Matrix (CCM) Cloud Audit and Compliance (CAC) Criteria Center for Internet Security (CIS) Controls for Cloud, etc. 3. Collaboration and Communication with Stakeholders You should always inform all stakeholders about potential risks, their impact, and incident response plans. A collaborative effort can improve risk assessment and awareness, help your organization leverage collective expertise, and facilitates effective decision-making against identified risks. 4. Implement Technical Safeguards Deploying technical safeguards like cloud access security broker (CASB) in cloud environments can enhance security and protect against risks. CASB can be implemented in the cloud or on-premise and enforces security policies for users accessing cloud-based resources. 5. Set Controls Based on Risk Treatment After identifying risks and determining your risk appetite, it’s important to implement dedicated measures to mitigate them. Develop robust data classification and lifecycle mechanisms and integrate processes that outline data protection, erasure, and hosting into your service-level agreements (SLA). 6. Employee Training and Awareness Programs What’s cloud risk management without training personnel? At the crux of risk management is identifying potential threats and taking steps to prevent them. Insider threats and the human factor contribute significantly to threats today. So, training employees on what to do to prevent risks during and after incidents can make a difference. 7. Adopt an Optimized Cloud Service Model Choose a cloud service model that suits your business, minimizes risks, and optimizes your cloud investment cost. 8. Continuous Improvement and Adaptation to Emerging Threats As a rule of thumb, you should always look to stay ahead of the curve. Conduct regular security assessments and audits to improve cloud security posture and adapt to emerging threats. Skills Needed for Cloud Architects in Risk Management Implementing effective cloud risk management requires having skilled architects on board. Through their in-depth understanding of cloud platforms, services, and technologies, these professionals can help organizations navigate complex cloud environments and design appropriate risk mitigation strategies. Cloud Security Expertise: This involves an understanding of cloud-specific security challenges and a solid knowledge of the cloud provider’s security capabilities. Risk Assessment and Management Skills: Cloud architects must be proficient in risk assessment processes, methodologies, and frameworks. It is also essential to prioritize risks based on their perceived impact and implement appropriate controls. Compliance and Regulatory Knowledge: Not complying with regulatory requirements may cause similar damage as poor risk management. Due to significant legal fees or fines, cloud architects must understand relevant industry regulations and compliance standards. They must also incorporate these requirements into the company’s risk management strategies. Incident Response and Incident Handling: Risk management aims to reduce the likelihood of incidents or their impact. It doesn’t mean completely eradicating incidents. So, when these incidents eventually happen, you want cloud security architects who can respond adequately and implement best practices in cloud environments. Conclusion The importance of prioritizing risk management in cloud environments cannot be overstated. It allows you to proactively identify risks, assess, prioritize, and mitigate them. This enhances the reliability and resilience of your cloud systems, promotes business continuity, optimizes resource utilization, and helps you manage compliance. Do you want to automate your cloud risk assessment and management? Prevasio is the ideal option for identifying risks and achieving security compliance. Request a demo now to see how Prevasio’s agentless platform can protect your valuable assets and streamline your multi-cloud environments. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Top 6 Hybrid Cloud Security Solutions: Key Features for 2024

    Hybrid cloud security uses a combination of on-premises equipment, private cloud deployments, and public cloud platforms to secure an... Uncategorized Top 6 Hybrid Cloud Security Solutions: Key Features for 2024 Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/15/24 Published Hybrid cloud security uses a combination of on-premises equipment, private cloud deployments, and public cloud platforms to secure an organization’s data, apps, and assets. It’s vital to the success of any organization that uses hybrid cloud network infrastructure. The key factors that make hybrid cloud security different from other types of security solutions are flexibility and agility. Your hybrid cloud security solution must be able to prevent, detect, and respond to threats regardless of the assets they compromise. That means being able to detect anomalous behaviors and enforce policies across physical endpoints, cloud-hosted software-as-a-service (SaaS) deployments, and in public cloud data centers. You need visibility and control wherever your organization stores or processes sensitive data. What is Hybrid Cloud Security? To understand hybrid cloud security, we must first cover exactly what the hybrid cloud is and how it works. Hybrid cloud infrastructure generally refers to any combination of public cloud providers (like AWS, Azure, Google Cloud) and private cloud environments. It’s easy to predict the security challenges hosting some of your organization’s apps on public cloud infrastructure and other apps on its own private cloud. How do you gain visibility across these different environments? How do you address vulnerabilities and misconfiguration risks? Hybrid cloud architecture can create complex problems for security leaders. However, it provides organizations with much-needed flexibility and offers a wide range of data deployment options. Most enterprises use a hybrid cloud strategy because it’s very rare for a large organization to entrust its entire IT infrastructure to a single vendor. As a result, security leaders need to come up with solutions that address the risks unique to hybrid cloud environments. Key Features of Hybrid Cloud Security An optimized hybrid cloud security solution gives the organization a centralized point of reference for managing security policies and toolsets across the entire environment. This makes it easier for security leaders to solve complex problems and detect advanced threats before they evolve into business disruptions. Hybrid cloud infrastructure can actually improve your security posture if managed appropriately. Some of the things you can do in this kind of environment include: Manage security risk more effectively. Lock down your most sensitive and highly regulated data in infrastructure under your direct control, while saving on cloud computing costs by entrusting less sensitive data to a third party. Distribute points of failure. Diversifying your organization’s cloud infrastructure reduces your dependence on any single cloud platform. This amplifies many of the practical benefits of network segmentation. Implement Zero Trust. Hybrid cloud networks can be configured with strict access control and authentication policies. These policies should work without regard to the network’s location, providing a strong foundation for demonstrating Zero Trust . Navigate complex compliance requirements. Organizations with hybrid cloud infrastructure are well-prepared to meet strict compliance requirements that apply to certain regions, like CCPA or GDPR data classification . With the right tools, demonstrating compliance through custom reports is easy. Real-time monitoring and remediation . With the right hybrid cloud security solutions in place, you can gain in-depth oversight into cloud workloads and respond immediately to security incidents when they occur. How Do Hybrid Cloud Security Solutions Work? Integration with Cloud Platforms The first step towards building a hybrid cloud strategy is determining how your cloud infrastructure deployments will interact with one another. This requires carefully reviewing the capabilities of the major public cloud platforms you use and determining your own private cloud integration capabilities. You will need to ensure seamless operation between these platforms while retaining visibility over your entire network. using APIs to programmatically connect different aspects of your cloud environment can help automate some of the most time-intensive manual tasks. For example, you may need to manage security configurations and patch updates across many different cloud resources. This will be very difficult and time-consuming if done manually, but a well-integrated automation-ready policy management solution can make it easy. Security Controls and Measures Your hybrid cloud solution will also need to provide comprehensive tools for managing firewalls and endpoints throughout your environment. These security tools can’t work in isolation — they need consistent policies informed by observation of your organization’s real-world risk profile. That means you’ll need to deploy a centralized solution for managing the policies and rulesets these devices use, and continuously configure them to address the latest threats. You will also need to configure your hybrid cloud network to prevent lateral movement and make it harder for internal threat actors to execute attacks. This is achieved with network segmentation, which partitions different parts of your network into segments that do not automatically accept traffic from one another. Microsegmentation further isolates different assets in your network according to their unique security needs, allowing access only to an exclusive set of users and assets. Dividing cloud workloads and resources into micro-segmented network zones improves network security and makes it harder for threat actors to successfully launch malware and ransomware attacks. It reduces the attack surface and enhances your endpoint security capabilities by enabling you to quarantine compromised endpoints the moment you detect unauthorized activity. How to Choose a Hybrid Cloud Security Provider Your hybrid cloud security provider should offer an extensive range of features that help you optimize your cloud service provider’s security capabilities. It should seamlessly connect your security team to the cloud platforms it’s responsible for protecting, while providing relevant context and visibility into cloud security threats. Here are some of the key features to look out for when choosing a hybrid cloud security provider: Scalability and Flexibility. The solution must scale according to your hybrid environment’s needs. Changing security providers is never easy, and you should project its capabilities well into the future before deciding to go through with the implementation. Pay close attention to usage and pricing models that may not be economically feasible as your organization grows. SLAs and Compliance. Your provider must offer service-level agreements that guarantee a certain level of performance. These SLAs will also play an important role ensuring compliance requirements are always observed, especially in highly regulated sectors like healthcare. Security Posture Assessment. You must be able to easily leverage the platform to assess and improve your overall security posture in a hybrid cloud model. This requires visibility and control over your data, regardless of where it is stored or processed. Not all hybrid cloud security solutions have the integrations necessary to make this feasible. DevSecOps Integration. Prioritize cloud security providers that offer support for integrating security best practices into DevOps, and providing security support early in the software development lifecycle. If your organization plans on building continuous deployment capabilities now or in the future, you will need to ensure your cloud security platform is capable of supporting those workflows. Top 6 Hybrid Cloud Security Solutions 1. AlgoSec AlgoSec is an application connectivity platform that manages security policies across hybrid and multi-cloud environments . It allows security leaders to take control of their apps and security tools, managing and enforcing policies that safeguard cloud services from threats. AlgoSec supports the automation of data security policy changes and allows users to simulate configuration changes across their tech stack. This makes it a powerful tool for in-depth risk analysis and compliance reporting, while giving security leaders the features they need to address complex hybrid cloud security challenges . Key Features: Complete network visualization. AlgoSec intelligently analyzes application dependencies across the network, giving security teams clear visibility into their network topology. Zero-touch change management. Customers can automate application and policy connectivity changes without requiring manual interaction between administrators and security tools. Comprehensive security policy management. AlgoSec lets administrators manage security policies across cloud and on-premises infrastructure, ensuring consistent security throughout the organization. What Do People Say About AlgoSec? AlgoSec is highly rated for its in-depth policy management capabilities and its intuitive, user-friendly interface. Customers praise its enhanced visibility, intelligent automation, and valuable configuration simulation tools. AlgoSec provides security professionals with an easy way to discover and map their network, and scale policy management even as IT infrastructure grows. 2. Microsoft Azure Security Center Microsoft Azure Security Center provides threat protection and unified security management across hybrid cloud workloads. As a leader in cloud computing, Microsoft has equipped Azure Security Center with a wide range of cloud-specific capabilities like advanced analytics, DevOps integrations, and comprehensive access management features into a single cloud-native solution. Adaptive Application Controls leverages machine learning to give users personalized recommendations for whitelisting applications. Just-in-Time VM Access protects cloud infrastructure from brute force attacks by reducing access when virtual machines are not needed. Key Features: Unified security management. Microsoft’s security platform offers visibility both into cloud workflows and non-cloud assets. It can map your hybrid network and enable proactive threat detection across the enterprise tech stack. Continuous security assessments. The platform supports automated security assessments for network assets, services, and applications. It triggers alerts notifying administrators when vulnerabilities are detected. Infrastructure-as-a-service (IaaS) compatibility. Microsoft enables customers to extend visibility and protection to the IaaS layer, providing uniform security and control across hybrid networks. What Do People Say About Microsoft Azure Security Center? Customers praise Microsoft’s hybrid cloud security solution for its user-friendly interface and integration capabilities. However, many users complain about false positives. These may be the result of security tool misconfigurations that lead to unnecessary disruptions and expensive investigations. 3. Amazon AWS Security Hub Amazon AWS Security Hub is a full-featured cloud security posture management solution that centralized security alerts and enables continuous monitoring of cloud infrastructure. It provides a detailed view of security alerts and compliance status across the hybrid environment. Security leaders can use Amazon AWS Security Hub to automate compliance checks, and manage their security posture through a centralized solution. It provides extensive API support and can integrate with a wide variety of additional tools. Key Features: Automated best practice security checks. AWS can continuously check your security practices against a well-maintained set of standards developed by Amazon security experts. Excellent data visualization capabilities. Administrators can customize the Security Hub dashboard according to specific compliance requirements and generate custom reports to demonstrate security performance. Uniform formatting for security findings. AWS uses its own format — the AWS Security Findings Format (ASFF) — to eliminate the need to normalize data across multiple tools and platforms. What Do People Say About Amazon AWS Security Hub? Amazon’s Security Hub is an excellent choice for native cloud security posture management, providing granular control and easy compliance. However, the platform’s complexity and lack of visibility does not resonate well with all customers. Some organizations will need to spend considerable time and effort building comprehensive security reports. 4. Google Cloud Security Command Center Google’s centralized platform helps administrators identify and remediate security risks in Google Cloud and hybrid environments. It is designed to identify misconfigurations and vulnerabilities while making it easier for security leaders to manage regulatory compliance. Some of the key features it offers include real-time threat detection, security health analytics, and risk assessment tools. Google can also simulate the attack path that threat actors might use to compromise cloud networks. Key Features: Multiple service tiers. The standard service tier provides security health analytics and alerts, while the premium tier offers attack path simulations and event threat detection capabilities. AI-generated summaries. Premium subscribers can read dynamically generated summaries of security findings and attack paths in natural language, reducing this technology’s barrier to entry. Cloud infrastructure entitlement management. Google’s platform supports cloud infrastructure entitlement management, which exposes misconfigurations at the principal account level from an identity-based framework What Do People Say About Google Cloud Security Command Center? Customers applaud the feature included in Google’s premium tier for this service, but complain that it can be hard to get. Not all organizations meet the requirements necessary to use this platform’s most advanced features. Once properly implemented and configured, however, it provides state-of-the-art cloud security that integrates well with Google-centric workflows. 5. IBM Cloud Pak for Security IBM’s cloud security service connects disparate data sources across hybrid and multi-cloud environments to uncover hidden threats. It allows hybrid organizations to advance Zero Trust strategies without compromising on operational security. IBM provides its customers with AI-driven insights, seamless integrations with existing IT environments, and data protection capabilities. It’s especially well-suited for enterprise organizations that want to connect public cloud services with legacy technology deployments that are difficult or expensive to modify. Key Features : Open security. This platform is designed to integrate easily with existing security applications, making it easy for customers to scale their security tech stack and improve policy standards across the enterprise. Improved data stewardship. IBM doesn’t require customers to move their data from one place to another. This makes compliance much easier to manage, especially in complex enterprise environments. Threat intelligence integrations. Customers can integrate IBM Cloud Pak with IBM Threat Intelligence Insights to get detailed and actionable insights delivered to cloud security teams. What Do People Say About IBM Cloud Pak? IBM Cloud Pak helps connect security teams and administrators to the content they need in real time. However, it’s a complicated environment with a significant amount of legacy code, well-established workarounds, and secondary components. This impacts usability and makes it less accessible than other entries on this list. 6. Palo Alto Networks Prisma Cloud Palo Alto Networks offers comprehensive cloud-native security across multi-cloud and hybrid environments to customers. Prisma Cloud reduces risk and prevents security breaches at multiple points in the application lifecycle. Some of the key features this solution includes are continuous monitoring, API security, and vulnerability management. It provides comprehensive visibility and control to security leaders managing extensive hybrid cloud deployments. Key Features: Hardens CI/CD pipelines. This solution includes robust features for reducing the attack surface of application development environments and protecting CI/CD pipelines. Secures infrastructure-as-code (IaC) deployments. Extensive coverage for detecting and resolving misconfigurations in IaC templates like Terraform, Kubernetes, ARM, and CloudFormation. Provides context-aware prioritization. Palo Alto Networks addresses open source vulnerabilities and license compliance problems contextually, bringing attention to the most important issues first. What Do People Say About Palo Alto Networks Prisma Cloud? Palo Alto Networks is highly regarded as an enterprise security leader. Many customers praise its products, and Prisma Cloud is no different. However, it comes with a very high price tag that many organizations simply can’t afford. This is especially true when additional integration and implementation costs are factored in. Additionally, some customers have complained about the lack of embedded Identity and Access Management (IAM) controls in the solution. Optimize Hybrid Cloud Security with AlgoSec Security leaders must continually adapt their security deployments to meet evolving cybersecurity threats in hybrid cloud environments. As the threat landscape changes, the organization’s policies and capabilities must adjust to meet new demands. Achieving this level of flexibility is not easy with purely manual configuration and policy workflows. Human error is a major element in many data breaches, and organizations must develop security best practices that address that risk. Implementing the right cloud security platform can make a significant difference when it comes to securing complex hybrid cloud deployments. The ability to simulate in-depth configuration changes and automate the deployment of those changes across the entire environment offers significant advantages to operational security. Consider making AlgoSec your cybersecurity co-pilot for identifying vulnerabilities and addressing security gaps. Avoid costly misconfigurations and leverage intelligent automation to make your hybrid cloud environment more secure than ever before. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

bottom of page