top of page

Search results

623 results found with an empty search

  • AlgoSec | Understanding Security Considerations in IaaS/PaaS/SaaS Deployments

    Knowing how to select and position security capabilities in different cloud deployment models is critical to comprehensive security... Cloud Security Understanding Security Considerations in IaaS/PaaS/SaaS Deployments Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/24/22 Published Knowing how to select and position security capabilities in different cloud deployment models is critical to comprehensive security across your organization. Implementing the right pattern allows you to protect the confidentiality, integrity, and availability of cloud data assets. It can also improve incident response to security threats. Additionally, security teams and cloud security architects no longer have to rely on pre-set security templates or approaches built for on-premises environments. Instead, they must adapt to the specific security demands of the cloud and integrate them with the overall cloud strategy. This can be accomplished by re-evaluating defense mechanisms and combining cloud-native security and vendor tools. Here, we’ll break down the security requirements and best practices for cloud service models like IaaS, PaaS, and SaaS. Do you have cloud security architects on board? We’ll also cover their roles and the importance of leveraging native security tools specific to each model. Managing Separation of Responsibilities with the Cloud Service Provider Secure cloud deployments start with understanding responsibilities. Where do you stand, and what is expected of you? There are certain security responsibilities the cloud security provider takes care of and those that the customer handles. This division of responsibilities means adjusting focus and using different measures to ensure security is necessary. Therefore, organizations must consider implementing compensating controls and alternative security measures to make up for any limitations in the cloud service provider’s security offerings. Security Considerations for SaaS (Software-as-a-Service) Deployments The specific security requirements in SaaS deployments may vary between services. However, it’s important to consider the following areas: Data protection During cloud deployments, protecting data assets is a tough nut to crack for many organizations. As a SaaS provider, ensuring data protection is crucial because you handle and store sensitive customer data. Encryption must be implemented for data in transit and at rest. Protecting data at rest is the cloud provider’s responsibility, whereas you are responsible for data in transit. The cloud provider implements security measures like encryption, access controls, and physical security to protect the data stored in their infrastructure. On the other hand, it’s your responsibility to implement secure communication protocols like encryption, ensuring data remains protected when it moves between your SaaS application. Additionally, best practice solutions may offer you the option of managing your encryption keys so that cloud operations staff cannot decrypt customer data. Interfacing with the Cloud Service There are a number of security considerations to keep in mind when interacting with a SaaS deployment. These include validating data inputs, implementing secure APIs, and securing communication channels. It’s crucial to use secure protocols like HTTPS and to ensure that the necessary authentication and authorization mechanisms are in place. You may also want to review and monitor access logs frequently to spot and address any suspicious activity. Application Security in SaaS During SaaS deployments, it’s essential to ensure application security. For instance, secure coding practices, continuous vulnerability assessments, and comprehensive application testing all contribute to effective SaaS application security. Cross-site scripting (XSS) and SQL injection are some of the common web application cyber-attacks today. You can improve the application’s security posture by implementing the right input validation, regular security patches from the SaaS provider, and web application firewalls (WAFs). Cloud Identity and Access Controls Here, you must define how cloud services will integrate and federate with existing enterprise identity and access management (IAM) systems. This ensures a consistent and secure access control framework. Implementing strong authentication mechanisms like multifactor authentication (MFA) and enforcing proper access controls based on roles and responsibilities are necessary security requirements. You should also consider using Cloud Access Security Broker (CASB) tools to provide adaptive and risk-based access controls. Regulatory Compliance Using a cloud service doesn’t exempt one from regulatory compliance, and cloud architects must design the SaaS architecture to align with these requirements. But why are these stringent requirements there in the first place? The purpose of these regulations is to protect consumer privacy by enforcing confidentiality, integrity, availability, and accountability. So, achieving compliance means you meet these regulations. It demonstrates that your applications and tech stack maintain secure privacy levels. Failure to comply could cost money in the form of fines, legal action, and a damaged reputation. You don’t want that. Security Considerations for PaaS (Platform-as-a-Service) Deployments PaaS security considerations during deployments will address all the SaaS areas. But as a PaaS customer, there are slight differences you should know. For example, more options exist to configure how data is protected and who can do what with it. As such, the responsibility of user permissions may be given to you. On the other hand, some PaaS providers may have built-in tools and mechanisms for managing user permissions. So, what are the other key areas you want to address to ensure a secure environment for PaaS deployments? We’ll start with the application security. Application Security The customer is responsible for securing the applications they build and deploy on the PaaS platform. Securing application platforms is necessary, and cloud architects must ensure this from the design and development stage. So, what do you do to ensure application security? It all starts from the onset. From secure coding practices, addressing application vulnerabilities, and conducting regular security testing. You’ll often find that most security vulnerabilities are introduced from the early stages of software development. If you can identify and fix potential flaws using penetration testing and threat modeling practices, you’re on your way to successful deployment. Data Security PaaS cloud security deployments offer more flexibility and allow customers control over their data and user entitlements. What this means is you can build and deploy your own applications on the platform. You can configure security measures and controls within your applications by defining who has access to applications, what they can do, and how data is protected. Here, cloud security architects and security teams can ensure data classification and access controls, determining appropriate encryption keys management practices, secure data integration and APIs, and data governance. Ultimately, configuring data protection mechanisms and user permissions provides customers with greater customization and control. Platform Security The platform itself, including the operating system, underlying infrastructure, data centers, and middleware, need to be protected. This is the responsibility of the PaaS provider. They must ensure that the components that keep the platform up are functional at all times. Network Security In PaaS environments, identity and roles are primarily used for network security to determine access to resources and data in the PaaS platform. As such, the most important factor to consider in this case is verifying the user identity and managing access based on their roles and permissions. Rather than relying on traditional network security measures like perimeter controls, IDS/IPS, and traffic monitoring, there is a shift to user-centric access controls. Security Considerations for IaaS (Infrastructure-as-a-Service) Cloud Deployments When it comes to application and software security, IaaS security during cloud deployment is similar. If you’re an IaaS customer, there are slight differences in how IaaS cloud deployment is handled. For example, while the cloud provider handles the hypervisor or virtualized layer, everything else is the customers’ responsibility. So, you must secure the cloud deployment by implementing appropriate security measures to safeguard their applications and data. Due to different deployment patterns, some security tools that work well for SaaS may not be suitable for IaaS. For example, we discussed how CASB could be excellent for cloud identity, data, and access controls in SaaS applications. However, this may not be effective in IaaS environments. Your cloud architects and security teams must understand these differences when deploying IaaS. They should consider alternative or additional security measures in certain areas to ensure more robust security during cloud deployments. These areas are: Access Management IaaS deployment requires you to consider several identity and access management (IAM) dimensions. For example, cloud architects must consider access to the operating system, including applications and middleware installed on them. Additionally, they must also consider privileged access, such as root or administrative access at the OS level. Keep in mind that IaaS has additional access layers. These consist of access to the IaaS console and other cloud provider features that may offer insights about or impact the operation of cloud resources. For example, key management and auditing and resource configuration and hardening. It’s important to clarify who has access to these areas and what they can do. Regular Patching There are more responsibilities for you. The IaaS customer is responsible for keeping workloads updated and maintained. This typically includes the OS itself and any additional software installed on the virtual machines. Therefore, cloud architects must apply the same vigilance to cloud workloads as they would to on-premises servers regarding patching and maintenance. This ensures proactive, consistent, and timely updates that ensure the security and stability of cloud workloads. Network Security IaaS customers must configure and manage security mechanisms within their virtual networks. This includes setting firewalls, using intrusion detection and intrusion prevention systems (IDS/IPS), establishing secure connections (VPN), and network monitoring. On the other hand, the cloud provider ensures network security for the underlying network infrastructure, like routers and switches. They also ensure physical security by protecting network infrastructure from unauthorized access. Data Protection While IaaS providers ensure the physical security of data centers, IaaS customers must secure their own data in the IaaS environment. They need to protect data stored in databases, virtual machines (VMs), and any other storage system provisioned by the IaaS provider. Some IaaS providers, especially large ones, offer encryption capabilities for the VMs created on their platform. This feature is typically free or low-priced. It’s up to you to decide whether managing your own encryption keys is more effective or to choose the provider’s offerings. If you decide to go for this feature, it’s important to clarify how encrypting data at rest may affect other services from the IaaS provider, such as backup and recovery. Leveraging Native Cloud Security Tools Just like the encryption feature, some cloud service providers offer a range of native tools to help customers enforce effective security. These tools are available for IaaS, PaaS, and SaaS cloud services. While customers may decide not to use them, the low financial and operational impact of native cloud security tools on businesses makes them a smart decision. It allows you to address several security requirements quickly and easily due to seamless control integration. However, it’s still important to decide which controls are useful and where they are needed. Conclusion Cloud security architecture is always evolving. And this continuous change makes cloud environments more complex and dynamic. From misconfigurations to data loss, many challenges can make secure cloud deployments for IaaS, PaaS, and SaaS services more challenging. Prevasio, an AlgoSec company, is your trusted cloud security partner that helps your organization streamline cloud deployments. Our cloud-native application provides increased risk visibility and control over security and compliance requirements. Contact us now to learn more about how you can expedite your cloud security operations. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Risk Management in Network Security: 7 Best Practices for 2024

    Protecting an organization against every conceivable threat is rarely possible. There is a practically unlimited number of potential... Uncategorized Risk Management in Network Security: 7 Best Practices for 2024 Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/26/24 Published Protecting an organization against every conceivable threat is rarely possible. There is a practically unlimited number of potential threats in the world, and security leaders don’t have unlimited resources available to address them. Prioritizing risks associated with more severe potential impact allows leaders to optimize cybersecurity decision-making and improve the organization’s security posture. Cybersecurity risk management is important because many security measures come with large costs. Before you can implement security controls designed to protect against cyberattacks and other potential risks, you must convince key stakeholders to support the project. Having a structured approach to cyber risk management lets you demonstrate exactly how your proposed changes impact the organization’s security risk profile. This makes it much easier to calculate the return on cybersecurity investment – making it a valuable tool when communicating with board members and executives. Here are seven tips every security leader should keep in mind when creating a risk management strategy: Cultivate a security-conscious risk management culture Use risk registers to describe potential risks in detail Prioritize proactive, low-cost risk remediation when possible Treat risk management as an ongoing process Invest in penetration testing to discover new vulnerabilities Demonstrate risk tolerance by implementing the NIST Cybersecurity Framework Don’t forget to consider false positives in your risk assessment What is a Risk Management Strategy? The first step to creating a comprehensive risk management plan is defining risk. According to the International Organization for Standardization (ISO) risk is “the effect of uncertainty on objectives”. This definition is accurate, but its scope is too wide. Uncertainty is everywhere, including things like market conditions, natural disasters, or even traffic jams. As a cybersecurity leader, your risk management process is more narrowly focused on managing risks to information systems, protecting sensitive data, and preventing unauthorized access. Your risk management program should focus on identifying these risks, assessing their potential impact, and creating detailed plans for addressing them. This might include deploying tools for detecting cyberattacks, implementing policies to prevent them, or investing in incident response and remediation tools to help you recover from them after they occur. In many cases, you’ll be doing all of these things at once. Crucially, the information you uncover in your cybersecurity risk assessment will help you prioritize these initiatives and decide how much to spend on them. Your risk management framework will provide you with the insight you need to address high-risk, high-impact cybersecurity threats first and manage low-risk, low-impact threats later on. 7 Tips for Creating a Comprehensive Risk Management Strategy 1. Cultivate a security-conscious risk management culture No CISO can mitigate security risks on their own. Every employee counts on their colleagues, partners, and supervisors to keep sensitive data secure and prevent data breaches. Creating a risk management strategy is just one part of the process of developing a security-conscious culture that informs risk-based decision-making. This is important because many employees have to make decisions that impact security on a daily basis. Not all of these decisions are critical-severity security scenarios, but even small choices can influence the way the entire organization handles risk. For example, most organizations list their employees on LinkedIn. This is not a security threat on its own, but it can contribute to security risks associated with phishing attacks and social engineering . Cybercriminals may create spoof emails inviting employees to fake webinars hosted by well-known employees, and use the malicious link to infect employee devices with malware. Cultivating a risk management culture won’t stop these threats from happening, but it might motivate employees to reach out when they suspect something is wrong. This gives security teams much greater visibility into potential risks as they occur, and increases the chance you’ll detect and mitigate threats before they launch active cyberattacks. 2. Use risk registers to describe potential risks in detail A risk register is a project management tool that describes risks that could disrupt a project during execution. Project managers typically create the register during the project planning phase and then refer to it throughout execution. A risk register typically uses the following characteristics to describe individual risks: Description : A brief overview of the risk itself. Category: The formal classification of the risk and what it affects. Likelihood: How likely this risk is to take place. Analysis: What would happen if this risk occurred. Mitigation: What would the team need to do to respond in this scenario. Priority: How critical is this risk compared to others. The same logic applies to business initiatives both large and small. Using a risk register can help you identify and control unexpected occurrences that may derail the organization’s ongoing projects. If these projects are actively supervised by a project manager, risk registers should already exist for them. However, there may be many initiatives, tasks, and projects that do not have risk registers. In these cases, you may need to create them yourself. Part of the overall risk assessment process should include finding and consolidating these risk registers to get an idea of the kinds of disruptions that can take place at every level of the organization. You may find patterns in the types of security risks that you find described in multiple risk registers. This information should help you evaluate the business impact of common risks and find ways to mitigate those risks effectively. 3. Prioritize proactive, low-cost risk remediation when possible Your organization can’t afford to prevent every single risk there is. That would require an unlimited budget and on-demand access to technical specialist expertise. However, you can prevent certain high-impact risks using proactive, low-cost policies that can make a significant difference in your overall security posture. You should take these opportunities when they present themselves. Password policies are a common example. Many organizations do not have sufficiently robust password policies in place. Cybercriminals know this –that’s why dictionary-based credential attacks still occur. If employees are reusing passwords across accounts or saving them onto their devices in plaintext, it’s only a matter of time before hackers notice. At the same time, upgrading a password policy is not an especially expensive task. Even deploying an enterprise-wide password manager and investing in additional training may be several orders of magnitude cheaper than implementing a new SIEM or similarly complex security platform. Your cybersecurity risk assessment will likely uncover many opportunities like this one. Take a close look at things like password policies, change management , and security patch update procedures and look for easy, low-cost projects that can provide immediate security benefits without breaking your budget. Once you address these issues, you will be in a much better position to pursue larger, more elaborate security implementations. 4. Treat risk management as an ongoing process Every year, cybercriminals leverage new tactics and techniques against their victims. Your organization’s security team must be ready to address the risks of emerging malware, AI-enhanced phishing messages, elaborate supply chain attacks, and more. As hackers improve their attack methodologies, your organization’s risk profile shifts. As the level of risk changes, your approach to information security must change as well. This means developing standards and controls that adjust according to your organization’s actual information security risk environment. Risk analysis should not be a one-time event, but a continuous one that delivers timely results about where your organization is today – and where it may be in the future. For example, many security teams treat firewall configuration and management as a one-time process. This leaves them vulnerable to emerging threats that they may not have known about during the initial deployment. Part of your risk management strategy should include verifying existing security solutions and protecting them from new and emerging risks. 5. Invest in penetration testing to discover new vulnerabilities There is more to discovering new risks than mapping your organization’s assets to known vulnerabilities and historical data breaches. You may be vulnerable to zero-day exploits and other weaknesses that won’t be immediately apparent. Penetration testing will help you discover and assess risks that you can’t find out about otherwise. Penetration testing mitigates risk by pinpointing vulnerabilities in your environment and showing how hackers could exploit them. Your penetration testing team will provide a comprehensive report showing you what assets were compromised and how. You can then use this information to close those security gaps and build a stronger security posture as a result. There are multiple kinds of penetration testing. Depending on your specific scenario and environment, you may invest in: External network penetration testing focuses on the defenses your organization deploys on internet-facing assets and equipment. The security of any business application exposed to the public may be assessed through this kind of test. Internal network penetration testing determines how cybercriminals may impact the organization after they gain access to your system and begin moving laterally through it. This also applies to malicious insiders and compromised credential attacks. Social engineering testing looks specifically at how employees respond to attackers impersonating customers, third-party vendors, and internal authority figures. This will help you identify risks associated with employee security training . Web application testing focuses on your organization’s web-hosted applications. This can provide deep insight into how secure your web applications are, and whether they can be leveraged to leak sensitive information. 6. Demonstrate risk tolerance by implementing the NIST Cybersecurity Framework The National Institute of Standards and Technology publishes one of the industry’s most important compliance frameworks for cybersecurity risk mitigation. Unlike similar frameworks like PCI DSS and GDPR, the NIST Cybersecurity Framework is voluntary – you are free to choose when and how you implement its controls in your organization. This set of security controls includes a comprehensive, flexible approach to risk management. It integrates risk management techniques across multiple disciplines and combines them into an effective set of standards any organization can follow. As of 2023, the NIST Risk Management Framework focuses on seven steps: Prepare the organization to change the way it secures its information technology solutions. Categorize each system and the type of information it processes according to a risk and impact analysis/ Select which NIST SP 800-53 controls offer the best data protection for the environment. Implement controls and document their deployment. Assess whether the correct controls are in place and operating as intended. Authorize the implementation in partnership with executives, stakeholders, and IT decision-makers. Monitor control implementations and IT systems to assess their effectiveness and discover emerging risks. 7. Don’t forget to consider false positives in your risk assessment False positives refer to vulnerabilities and activity alerts that have been incorrectly flagged. They can take many forms during the cybersecurity risk assessment process – from vulnerabilities that don’t apply to your organization’s actual tech stack to legitimate traffic getting blocked by firewalls. False positives can impact risk assessments in many ways. The most obvious problem they present is skewing your assessment results. This may lead to you prioritizing security controls against threats that aren’t there. If these controls are expensive or time-consuming to deploy, you may end up having an uncomfortable conversation with key stakeholders and decision-makers later on. However, false positives are also a source of security risks. This is especially true with automated systems like next-generation firewalls , extended detection and response (XDR) solutions, and Security Orchestration, Automation, and Response (SOAR) platforms. Imagine one of these systems detects an outgoing video call from your organization. It flags the connection as suspicious and begins investigating it. It discovers the call is being made from an unusual location and contains confidential data, so it blocks the call and terminates the connection. This could be a case of data exfiltration, or it could be the company CEO presenting a report to stockholders while traveling. Most risk assessments don’t explore the potential risk of blocking high-level executive communications or other legitimate communications due to false positives. Use AlgoSec to Identify and Assess Network Security Risks More Accurately Building a comprehensive risk management strategy is not an easy task. It involves carefully observing the way your organization does business and predicting how cybercriminals may exploit those processes. It demands familiarity with almost every task, process, and technology the organization uses, and the ability to simulate attack scenarios from multiple different angles. There is no need to accomplish these steps manually. Risk management platforms like AlgoSec’s Firewall Analyzer can help you map business applications throughout your network and explore attack simulations with detailed “what-if” scenarios. Use Firewall Analyzer to gain deep insight into how your organization would actually respond to security incidents and unpredictable events, then use those insights to generate a more complete risk management approach. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Build and Enforce Defense in-Depth | An AlgoSec-Cisco Tetration webinar | AlgoSec

    Webinars Build and Enforce Defense in-Depth | An AlgoSec-Cisco Tetration webinar Micro-segmentation protects your workloads and applications against lateral movement of malware and limits the spread of insider threats, yet successfully implementing a defense-in-depth strategy using micro-segmentation is complicated. In this technical webinar, Jothi Prakash Prabakaran, Senior Product Manager at Cisco, and Yoni Geva, Product Manager at AlgoSec, will provide a step-by-step blueprint to implementing this strategy using the micro-segmentation capabilities of Cisco Tetration and network security policy management capabilities of AlgoSec. They will demonstrate how to tighten your security posture within the data center using an allow-list approach. They will also show how to enforce these granular micro-segmented policies enforced on the workloads with Cisco Tetration and a coarse grain policy enforced across the infrastructure through AlgoSec network security policy management. Watch the webinar to learn how to: Understand your business applications to create your micro-segmentation policy Validate your micro-segmentation policy is accurate Enforce these granular policies on workloads and summarized policies across your infrastructure Use risk and vulnerability analysis to tighten your workload and network security Identify and manage security risk and compliance in your micro-segmented environment July 22, 2020 Jothi Prakash Prabakaran Yoni Geva Product Manager Relevant resources AlgoSec Joins Cisco’s Global Price List Keep Reading Introducing Deeper Integration with Cisco’s Tetration Keep Reading Application Segmentation With Cisco Tetration and AlgoSec Read Document Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | Managing network connectivity during mergers and acquisitions

    Prof. Avishai Wool discusses the complexities of mergers and acquisitions for application management and how organizations can securely... Security Policy Management Managing network connectivity during mergers and acquisitions Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 7/22/21 Published Prof. Avishai Wool discusses the complexities of mergers and acquisitions for application management and how organizations can securely navigate the transition It comes as no surprise that the number of completed Mergers and Acquisitions (M&As) dropped significantly during the early stages of the pandemic as businesses closed ranks and focused on surviving rather than thriving. However, as we start to find some reprieve, many experts forecast that we’ll see an upturn in activity. In fact, by the end of 2020, M&A experienced a sudden surge and finished the year with only a 3% decline on 2019 levels. Acquiring companies is more than just writing a cheque. There are hundreds of things to consider both big and small, from infrastructure to staffing, which can make or break a merger. With that in mind, what do businesses need to do in order to ensure a secure and successful transition? When two worlds collide For many businesses, a merger or acquisition is highly charged. There’s often excitement about new beginnings mixed with trepidation about major business changes, not least when it comes to IT security. Mergers and acquisitions are like two planets colliding, each with their own intricate ecosystem. You have two enterprises running complex IT infrastructures with hundreds if not thousands of applications that don’t just simply integrate together. More often than not they perform replicated functions, which implies that some need to be used in parallel, while others need to be decommissioned and removed. This means amending, altering, and updating thousands of policies to accommodate new connections, applications, servers, and firewalls without creating IT security risks or outages. In essence, from an IT security perspective, a merger or acquisition is a highly complicated project that, if not planned and implemented properly, can have a long-term impact on business operations. Migrating and merging infrastructures One thing a business will need before it can even start the M&A process is an exhaustive inventory of all business applications spanning both businesses. An auto-discovery tool can assist here, collecting data from any application that is active on the network and adding it to a list. This should allow the main business to create a map of network connectivity flows which will form the cornerstone of the migration from an application perspective. Next comes security. A vulnerability assessment should be carried across both enterprise networks to identify any business-critical applications that may be put at risk. This assessment will give the main business the ability to effectively ‘rank’ applications and devices in terms of risk and necessity, allowing for priority lists to be created. This will help SecOps focus their efforts on crucial areas of the business that contain sensitive customer data, for instance. By following these steps you’ll get a clear organizational view of the entire enterprise environment and be able to identify and map all the critical business applications, linking vulnerabilities and cyber risks to specific applications and prioritize remediation actions based on business-driven needs. The power of automation While the steps outlined above will give you with an accurate picture of your IT topology and its business risk, this is only the first half of the story. Now you need to update security policies to support changes to business applications. Automation is critical when it comes to maintaining security during a merger or acquisition. An alarming number of data breaches are due to firewall misconfigurations, often resulting from attempts to change policies manually in a complex network environment. This danger increases with M&A, because the two merging enterprises likely have different firewall setups in place, often mixing traditional with next-generation firewalls or firewalls that come from different vendors. Automation is therefore essential to ensure the firewall change management process is handled effectively and securely with minimal risk of misconfigurations. Achieving true Zero-Touch automation in the network security domain is not an easy task but over time, you can let your automation solution run handsfree as you conduct more changes and gain trust through increasing automation levels step by step. Our Security Management Solution enables IT and security teams to manage and control all their security devices – from cloud controls in public clouds, SDNs, and on-premise firewalls from one single console. With AlgoSec you can automate time-consuming security policy changes and proactively assess risk to ensure continuous compliance. It is our business-driven approach to security policy management that enables organizations to reduce business risk, ensure security and continuous compliance, and drive business agility. Maintaining security throughout the transition A merger or acquisition presents a range of IT challenges but ensuring business applications can continue to run securely throughout the transition is critical. If you take an application centric approach and utilize automation, you will be in the best position for the merger/migration and will ultimately drive long term success. To learn more or speak to one of our security experts, schedule your personal demo . Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Navigating the Cybersecurity Horizon in 2024

    The persistence of sophisticated ransomware In 2023, organizations faced a surge in ransomware attacks, prompting a reevaluation of... Network Segmentation Navigating the Cybersecurity Horizon in 2024 Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/17/23 Published The persistence of sophisticated ransomware In 2023, organizations faced a surge in ransomware attacks, prompting a reevaluation of cybersecurity readiness. The focus on high-value assets and critical infrastructure indicated an escalating threat landscape, demanding stronger preemptive measures. This trend is expected to continue in 2024 as cybercriminals exploit vulnerabilities. Beyond relying on technology alone, organizations must adopt strategies like Zero Trust and Micro-segmentation for comprehensive preparedness, fortifying data security. A resolute and practical response is crucial to safeguard critical assets in the evolving cybersecurity landscape. DevSecOps Integration DevSecOps is set to become a cornerstone in software development, integrating security practices proactively. As Infrastructure as a Service (IaaS) popularity rises, customizing security settings becomes challenging, necessitating a shift from network perimeter reliance. Anticipating an “Always-on Security” approach like Infrastructure as Code (IaC), companies can implement policy-based guardrails in the CI/CD pipeline. If risks violating the guardrails are identified, automation should halt for human review. Cloud-Native Application Protection Platforms (CNAPP): The CNAPP market has advanced from basic Cloud Security Posture Management (CSPM) to include varied vulnerability and malware scans, along with crucial behavioral analytics for cloud assets like containers. However, few vendors emphasize deep analysis of Infrastructure as a Service (IaaS) networking controls in risk and compliance reporting. A more complete CNAPP platform should also provide comprehensive analytics of cloud applications’ connectivity exposure. Application-centric approach to network security will supersede basic NSPM Prepare for the shift from NSPM to an application-centric security approach, driven by advanced technologies, to accelerate in 2024. Organizations, grappling with downsizing and staff shortages, will strategically adopt this holistic approach to improve efficiency in the security operations team. Emphasizing knowledge retention and automated change processes will become crucial to maintain security with agility. AI-based enhancements to security processes Generative AI, as heralded by Chat-GPT and its ilk, has made great strides in 2023, and has demonstrated that the technology has a lot of potential. I think that in 2024 we will see many more use cases in which this potential goes from simply being “cool” to a more mature technology that is brought to market to bring real value to owners of security processes. Any use case that involves analyzing, summarizing, or generalizing text, can potentially benefit from a generative AI assist. The trick will be to do so in ways that save human time, without introducing factual hallucinations. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Firewall performance tuning: Common issues & resolutions

    A firewall that runs 24/7 requires a good amount of computing resources. Especially if you are running a complex firewall system, your... Firewall Change Management Firewall performance tuning: Common issues & resolutions Asher Benbenisty 2 min read Asher Benbenisty Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 8/9/23 Published A firewall that runs 24/7 requires a good amount of computing resources. Especially if you are running a complex firewall system, your performance overhead can actually slow down the overall throughput of your systems and even affect the actual functionalities of your firewall. Here is a brief overview of common firewall performance issues and the best practices to help you tune your firewall performance . 7 Common performance issues with firewalls Since firewall implementations often include some networking hardware usage, they can slow down network performance and traffic bottlenecks within your network. 1. High CPU usage The more network traffic you deal with, the more CPU time your server will need. When a firewall is running, it adds to CPU utilization since the processes need more power to execute the network packet analysis and subsequent firewall This may lead to firewall failures in extreme cases where the firewall process is completely shut down or the system experiences a noticeable lag affecting overall functionality. A simple way to resolve this issue would be to increase the hardware capabilities. But as that might not be a viable solution in all cases, you must consider minimizing the network traffic with router-level filtering or decreasing the server load with optimized 2. Route flapping Router misconfiguration or hardware failure can cause frequent advertising of alternate routes. This will increase the load on your resources and thus lead to performance issues. 3. Network errors and discards A high number of error packets or discarded packets can burden your resources as these packets are still processed by the firewall even when they ultimately turn out to be dud in terms of traffic. Such errors usually happen when routers try to reclaim some buffer space. 4. Congested network access link Network access link congestion can be caused due to a bottleneck happening between a high bandwidth IP Network and LAN. When there is high traffic, the router queue gets filled and causes jitters and time delays. When there are more occurrences of jitter, more packets are dropped on the receiving end, causing a degradation of the quality of audio or video being transmitted. This issue is often observed in VoIP systems . 5. Network link failure When packet loss continues for over a few seconds, it can be deemed a network link failure. While re-establishing the link could take just a few seconds, the routers may already be looking for alternate routes. Frequent network link failures can be a symptom of power supply or hardware issues. 6. Misconfigurations Software or hardware misconfigurations can easily lead to overloading of LAN, and such a burden can easily affect the system’s performance. Situations like these can be caused by misconfigured multicast traffic and can affect the overall data transfer rate of all users. 7. Loss of packets Loss of packets can cause timeout errors, retransmissions, and network slowness. Loss of packets can happen due to delayed operations, server slowdown, misconfiguration, and several other reasons. How to fine-Tune your firewall performance Firewall performance issues can be alleviated with hardware upgrades. But as you scale up, upgrading hardware at an increasing scale would mean high expenses and an overall inefficient system. A much better cost-effective way to resolve firewall performance issues would be to figure out the root cause and make the necessary updates and fixes to resolve the issues. Before troubleshooting, you should know the different types of firewall optimization techniques: Hardware updates Firewall optimization can be easily achieved through real-time hardware updates and upgrades. This is a straightforward method where you add more capacity to your computing resources to handle the processing load of running a firewall. General best practices This involves the commonly used universal best practices that ensure optimized firewall configurations and working. Security policies, data standard compliances , and keeping your systems up to date and patched will all come under this category of optimizations. Any optimization effort generally applied to all firewalls can be classified under this type. Vendor specific Optimization techniques designed specifically to fit the requirements of a particular vendor are called vendor-specific optimizations. This calls for a good understanding of your protected systems, how traffic flows, and how to minimize the network load. Model specific Similar to vendor-specific optimizations, model-specific optimization techniques consider the particular network model you use. For instance, the Cisco network models usually have debugging features that can slow down performance. Similarly, the PIX 6.3 model uses TCP intercept that can slow down performance. Based on your usage and requirements, you can turn the specific features on or off to boost your firewall performance. Best practices to resolve the usual firewall performance bottlenecks Here are some proven best practices to improve your firewall’s performance. Additionally, you might also want to read Max Power by Timothy Hall for a wholesome understanding. Standardize your network traffic Any good practice starts with rectifying your internal errors and vulnerabilities. Ensure all your outgoing traffic aligns with your cybersecurity standards and regulations. Weed out any application or server sending out requests that don’t comply with the security regulations and make the necessary updates to streamline your network. Router level filtering To reduce the load on your firewall applications and hardware, you can use router-level network traffic filtering. This can be achieved by making a Standard Access List filter from the previously dropped requests and then routing them using this list for any other subsequent request attempts. This process can be time-consuming but is simple and effective in avoiding bottlenecks. Avoid using complicated firewall rules Complex firewall rules can be resource heavy and place a lot of burden on your firewall performance. Simplifying this ruleset can boost your performance to a great extent. You should also regularly audit these rules and remove unused rules. To help you clean up firewall rules, you can start with Algosec’s firewall rule cleanup and performance optimization tool . Test your firewall Regular testing and auditing of your firewall can help you identify any probable causes for performance slowdown. You can collect information on your network traffic and use it to optimize how your firewall operates. You can use Algosec’s firewall auditor services to take care of all your auditing requirements and ensure compliance at all levels. Make use of common network troubleshooting tools To analyze the network traffic and troubleshoot your performance issues, you can use common network tools like netstat and iproute2. These tools provide you with network stats and in-depth information about your traffic that can be well utilized to improve your firewall configurations. You can also use check point servers and tools like SecureXL, and CoreXL. Follow a well-defined security policy As with any security implementation, you should always have a well-defined security policy before configuring your firewalls. This gives you a good idea of how your firewall configurations are made and lets you simplify them easily. Change management is also essential to your firewall policy management process . You should also document all the changes, reviews, and updates you make to your security policies to trace any problematic configurations and keep your systems updated against evolving cyber threats. A good way to mitigate security policy risks is to utilize AlgoSec. Network segmentation Segmentation can help boost performance as it helps isolate network issues and optimize bandwidth allocation. It can also help to reduce the traffic and thus further improve the performance. Here is a guide on network segmentation you can check out. Automation Make use of automation to update your firewall settings. Automating the firewall setup process can greatly reduce setup errors and help you make the process more efficient and less time-consuming. You can also extend the automation to configure routers and switches. Algobot is an intelligent chatbot that can effortlessly handle network security policy management tasks for you. Handle broadcast traffic efficiently You can create optimized rules to handle broadcast traffic without logging to improve performance. Make use of optimized algorithms Some firewalls, such as the Cisco Pix, ASA 7.0 , Juniper network models, and FWSM 4.0 are designed to match packets without dependency on rule order. You can use these firewalls; if not, you will have to consider the rule order to boost the performance. To improve performance, you should place the most commonly used policy rules on the top of the rule base. The SANS Institute recommends the following order of rules: Anti-spoofing filters User permit rules Management permit rules Noise drops Deny and alert Deny and log DNS objects Try to avoid using DNS objects that need DNS lookup services. This slows down the firewall. Router interface design Matching the router interface with your firewall interface is a good way to ensure good performance. If your router interface is half duplex and the firewall is full duplex, the mismatch can cause some performance issues. Similarly, you should try to match the switch interface with your firewall interface, making them report on the same speed and mode. For gigabit switches, you should set up your firewall to automatically adjust speed and duplex mode. You can replace the cables and patch panel ports if you cannot match the interfaces. VPN If you are using VPN and firewalls, you can separate them to remove some VPN traffic and processing load from the firewall and thus increase the performance. UTM features You can remove the additional UTM features like Antivirus, and URL scanning features from the firewall to make it more efficient. This does not mean you completely eliminate any additional security features. Instead, just offload them from the firewall to make the firewall work faster and take up fewer computing resources. Keep your systems patched and updated Always keep your systems, firmware, software, and third-party applications updated and patched to deal with all known vulnerabilities. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Prevasio’s Role in Red Team Exercises and Pen Testing

    Cybersecurity is an ever prevalent issue. Malicious hackers are becoming more agile by using sophisticated techniques that are always... Cloud Security Prevasio’s Role in Red Team Exercises and Pen Testing Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/21/20 Published Cybersecurity is an ever prevalent issue. Malicious hackers are becoming more agile by using sophisticated techniques that are always evolving. This makes it a top priority for companies to stay on top of their organization’s network security to ensure that sensitive and confidential information is not leaked or exploited in any way. Let’s take a look at the Red/Blue Team concept, Pen Testing, and Prevasio’s role in ensuring your network and systems remain secure in a Docker container atmosphere. What is the Red/Blue Team Concept? The red/blue team concept is an effective technique that uses exercises and simulations to assess a company’s cybersecurity strength. The results allow organizations to identify which aspects of the network are functioning as intended and which areas are vulnerable and need improvement. The idea is that two teams (red and blue) of cybersecurity professionals face off against each other. The Red Team’s Role It is easiest to think of the red team as the offense. This group aims to infiltrate a company’s network using sophisticated real-world techniques and exploit potential vulnerabilities. It is important to note that the team comprises highly skilled ethical hackers or cybersecurity professionals. Initial access is typically gained by stealing an employee’s, department, or company-wide user credentials. From there, the red team will then work its way across systems as it increases its level of privilege in the network. The team will penetrate as much of the system as possible. It is important to note that this is just a simulation, so all actions taken are ethical and without malicious intent. The Blue Team’s Role The blue team is the defense. This team is typically made up of a group of incident response consultants or IT security professionals specially trained in preventing and stopping attacks. The goal of the blue team is to put a stop to ongoing attacks, return the network and its systems to a normal state, and prevent future attacks by fixing the identified vulnerabilities. Prevention is ideal when it comes to cybersecurity attacks. Unfortunately, that is not always possible. The next best thing is to minimize “breakout time” as much as possible. The “breakout time” is the window between when the network’s integrity is first compromised and when the attacker can begin moving through the system. Importance of Red/Blue Team Exercises Cybersecurity simulations are important for protecting organizations against a wide range of sophisticated attacks. Let’s take a look at the benefits of red/blue team exercises: Identify vulnerabilities Identify areas of improvement Learn how to detect and contain an attack Develop response techniques to handle attacks as quickly as possible Identify gaps in the existing security Strengthen security and shorten breakout time Nurture cooperation in your IT department Increase your IT team’s skills with low-risk training What are Pen Testing Teams? Many organizations do not have red/blue teams but have a Pen Testing (aka penetration testing) team instead. Pen testing teams participate in exercises where the goal is to find and exploit as many vulnerabilities as possible. The overall goal is to find the weaknesses of the system that malicious hackers could take advantage of. Companies’ best way to conduct pen tests is to use outside professionals who do not know about the network or its systems. This paints a more accurate picture of where vulnerabilities lie. What are the Types of Pen Testing? Open-box pen test – The hacker is provided with limited information about the organization. Closed-box pen test – The hacker is provided with absolutely no information about the company. Covert pen test – In this type of test, no one inside the company, except the person who hires the outside professional, knows that the test is taking place. External pen test – This method is used to test external security. Internal pen test – This method is used to test the internal network. The Prevasio Solution Prevasio’s solution is geared towards increasing the effectiveness of red teams for organizations that have taken steps to containerize their applications and now rely on docker containers to ship their applications to production. The benefits of Prevasio’s solution to red teams include: Auto penetration testing that helps teams conduct break-and-attack simulations on company applications. It can also be used as an integrated feature inside the CI/CD to provide reachability assurance. The behavior analysis will allow teams to identify unintentional internal oversights of best practices. The solution features the ability to intercept and scan encrypted HTTPS traffic. This helps teams determine if any credentials should not be transmitted. Prevasio container security solution with its cutting-edge analyzer performs both static and dynamic analysis of the containers during runtime to ensure the safest design possible. Moving Forward Cyberattacks are as real of a threat to your organization’s network and systems as physical attacks from burglars and robbers. They can have devastating consequences for your company and your brand. The bottom line is that you always have to be one step ahead of cyberattackers and ready to take action, should a breach be detected. The best way to do this is to work through real-world simulations and exercises that prepare your IT department for the worst and give them practice on how to respond. After all, it is better for your team (or a hired ethical hacker) to find a vulnerability before a real hacker does. Simulations should be conducted regularly since the technology and methods used to hack are constantly changing. The result is a highly trained team and a network that is as secure as it can be. Prevasio is an effective solution in conducting breach and attack simulations that help red/blue teams and pen testing teams do their jobs better in Docker containers. Our team is just as dedicated to the security of your organization as you are. Click here to learn more start your free trial. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec for GDPR - AlgoSec

    AlgoSec for GDPR Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec ObjectFlow - AlgoSec

    AlgoSec ObjectFlow Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Rescuing your network with micro-segmentation

    Given the benefits of a micro segmentation strategy, it is worth understanding how to navigate these common challenges, and move towards a more consolidated, secure network Webinars Rescuing Your Network with Micro-Segmentation Cybersecurity has turned into a top priority as hackers grow more sophisticated. Micro-segmentation is a protective measure that allows you to put in gateways separating specific areas. This buffer can serve as a major deterrent keeping criminals from attacking sensitive data, and providing you with the ability to minimize the damage caused by unauthorized intrusions. It can also help with detection of weak points which expose your network to breaches. Join our panel of experts to learn how to plan and build your micro-segmentation strategy while avoiding common pitfalls along the way. In this session, we will discuss: The basics of micro-segmentation and it can help your network Why today’s environment has contributed to a greater need for micro-segmentation How to spot and avoid critical errors that can derail your micro-segmentation implementation July 5, 2021 Alex Hilton Chief Executive at Cloud Industry Forum (CIF) Prof. Avishai Wool CTO & Co Founder AlgoSec Relevant resources Building a Blueprint for a Successful Micro-segmentation Implementation Keep Reading Micro-Segmentation Implementation - Taking the Leap from Strategy to Execution Keep Reading Micro-segmentation – from strategy to execution Keep Reading Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Challenges in Managing Security in Native, Hybrid and Multi-Cloud Environments - AlgoSec

    Challenges in Managing Security in Native, Hybrid and Multi-Cloud Environments Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | The Complete Guide to Perform an AWS Security Audit

    90% of organizations use a multi-cloud operating model to help achieve their business goals in a 2022 survey. AWS (Amazon Web Services)... Cloud Security The Complete Guide to Perform an AWS Security Audit Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 7/27/23 Published 90% of organizations use a multi-cloud operating model to help achieve their business goals in a 2022 survey. AWS (Amazon Web Services) is among the biggest cloud computing platforms businesses use today. It offers cloud storage via data warehouses or data lakes, data analytics, machine learning, security, and more. Given the prevalence of multi-cloud environments, cloud security is a major concern. 89% of respondents in the above survey said security was a key aspect of cloud success. Security audits are essential for network security and compliance. AWS not only allows audits but recommends them and provides several tools to help, like AWS Audit Manager. In this guide, we share the best practices for an AWS security audit and a detailed step-by-step list of how to perform an AWS audit. We have also explained the six key areas to review. Best practices for an AWS security audit There are three key considerations for an effective AWS security audit: Time it correctly You should perform a security audit: On a regular basis. Perform the steps described below at regular intervals. When there are changes in your organization, such as new hires or layoffs. When you change or remove the individual AWS services you use. This ensures you have removed unnecessary permissions. When you add or remove software to your AWS infrastructure. When there is suspicious activity, like an unauthorized login. Be thorough When conducting a security audit: Take a detailed look at every aspect of your security configuration, including those that are rarely used. Do not make any assumptions. Use logic instead. If an aspect of your security configuration is unclear, investigate why it was instated and the business purpose it serves. Simplify your auditing and management process by using unified cloud security platforms . Leverage the shared responsibility model AWS uses a shared responsibility model. It splits the responsibility for the security of cloud services between the customer and the vendor. A cloud user or client is responsible for the security of: Digital identities Employee access to the cloud Data and objects stored in AWS Any third-party applications and integrations AWS handles the security of: The global AWS online infrastructure The physical security of their facilities Hypervisor configurations Managed services like maintenance and upgrades Personnel screening Many responsibilities are shared by both the customer and the vendor, including: Compliance with external regulations Security patches Updating operating systems and software Ensuring network security Risk management Implementing business continuity and disaster recovery strategies The AWS shared responsibility model assumes that AWS must manage the security of the cloud. The customer is responsible for security within the cloud. Step-by-step process for an AWS security audit An AWS security audit is a structured process to analyze the security of your AWS account. It lets you verify security policies and best practices and secure your users, roles, and groups. It also ensures you comply with any regulations. You can use these steps to perform an AWS security audit: Step 1: Choose a goal and audit standard Setting high-level goals for your AWS security audit process will give the audit team clear objectives to work towards. This can help them decide their approach for the audit and create an audit program. They can outline the steps they will take to meet goals. Goals are also essential to measure the organization’s current security posture. You can speed up this process using a Cloud Security Posture Management (CSPM) tool . Next, define an audit standard. This defines assessment criteria for different systems and security processes. The audit team can use the audit standard to analyze current systems and processes for efficiency and identify any risks. The assessment criteria drive consistent analysis and reporting. Step 2: Collect and review all assets Managing your AWS system starts with knowing what resources your organization uses. AWS assets can be data stores, applications, instances, and the data itself. Auditing your AWS assets includes: Create an asset inventory listing: Gather all assets and resources used by the organization. You can collect your assets using AWS Config, third-party tools, or CLI (Command Line Interface) scripts. Review asset configuration: Organizations must use secure configuration management practices for all AWS components. Auditors can validate if these standards are competent to address known security vulnerabilities. Evaluate risk: Asses how each asset impacts the organization’s risk profile. Integrate assets into the overall risk assessment program. Ensure patching: Verify that AWS services are included in the internal patch management process. Step 3: Review access and identity Reviewing account and asset access in AWS is critical to avoid cybersecurity attacks and data breaches. AWS Identity and Access Management (IAM ) is used to manage role-based access control. This dictates which users can access and perform operations on resources. Auditing access controls include: Documenting AWS account owners: List and review the main AWS accounts, known as the root accounts. Most modern teams do not use root accounts at all, but if needed, use multiple root accounts. Implement multi-factor authentication (MFA): Implement MFA for all AWS accounts based on your security policies. Review IAM user accounts: Use the AWS Management Console to identify all IAM users. Evaluate and modify the permissions and policies for all accounts. Remove old users. Review AWS groups: AWS groups are a collection of IAM users. Evaluate each group and the permissions and policies assigned to them. Remove old groups. Check IAM roles: Create job-specific IAM roles. Evaluate each role and the resources it has access to. Remove roles that have not been used in 90 days or more. Define monitoring methods: Install monitoring methods for all IAM accounts and roles. Regularly review these methods. Use least privilege access: The Principle of Least Privilege Access (PoLP) ensures users can only access what they need to complete a task. It prevents overly-permissive access controls and the misuse of systems and data. Implement access logs: Use access logs to track requests to access resources and changes made to resources. Step 4: Analyze data flows Protecting all data within the AWS ecosystem is vital for organizations to avoid data leaks. Auditors must understand the data flow within an organization. This includes how data moves from one system to another in AWS, where data is stored, and how it is protected. Ensuring data protection includes: Assess data flow: Check how data enters and exits every AWS resource. Identify any vulnerabilities in the data flows and address them. Ensure data encryption: Check if all data is encrypted at rest and in transit. Review connection methods: Check connection methods to different AWS systems. Depending on your workloads, this could include AWS Console, S3, RDS (relational database service), and more. Use key management services: Ensure data is encrypted at rest using AWS key management services. Use multi-cloud management services: Since most organizations use more than one cloud system, using multi-cloud CSPM software is essential. Step 5: Review public resources Elements within the AWS ecosystem are intentionally public-facing, like applications or APIs. Others are accidentally made public due to misconfiguration. This can lead to data loss, data leaks, and unintended access to accounts and services. Common examples include EBS snapshots, S3 objects, and databases. Identifying these resources helps remediate risks by updating access controls. Evaluating public resources includes: Identifying all public resources: List all public-facing resources. This includes applications, databases, and other services that can access your AWS data, assets, and resources. Conduct vulnerability assessments: Use automated tools or manual techniques to identify vulnerabilities in your public resources. Prioritize the risks and develop a plan to address them. Evaluate access controls: Review the access controls for each public resource and update them as needed. Remove unauthorized access using security controls and tools like S3 Public Access Block and Guard Duty. Review application code: Check the code for all public-facing applications for vulnerabilities that attackers could exploit. Conduct tests for common risks such as SQL injection, cross-site scripting (XSS), and buffer overflows. Key AWS areas to review in a security audit There are six essential parts of an AWS system that auditors must assess to identify risks and vulnerabilities: Identity access management (IAM) AWS IAM manages the users and access controls within the AWS infrastructure. You can audit your IAM users by: List all IAM users, groups, and roles. Remove old or redundant users. Also, remove these users from groups. Delete redundant or old groups. Remove IAM roles that are no longer in use. Evaluate each role’s trust and access policies. Review the policies assigned to each group that a user is in. Remove old or unnecessary security credentials. Remove security credentials that might have been exposed. Rotate long-term access keys regularly. Assess security credentials to identify any password, email, or data leaks. These measures prevent unauthorized access to your AWS system and its data. Virtual private cloud (VPC) Amazon Virtual Private Cloud (VPC) enables organizations to deploy AWS services on their own virtual network. Secure your VPC by: Checking all IP addresses, gateways, and endpoints for vulnerabilities. Creating security groups to control the inbound and outbound traffic to the resources within your VPC. Using route tables to check where network traffic from each subnet is directed. Leveraging traffic mirroring to copy all traffic from network interfaces. This data is sent to your security and monitoring applications. Using VPC flow logs to capture information about all IP traffic going to and from the network interfaces. Regularly monitor, update, and assess all of the above elements. Elastic Compute Cloud (EC2) Amazon Elastic Compute Cloud (EC2) enables organizations to develop and deploy applications in the AWS Cloud. Users can create virtual computing environments, known as instances, to launch as servers. You can secure your Amazon EC2 instances by: Review key pairs to ensure that login information is secure and only authorized users can access the private key. Eliminate all redundant EC2 instances. Create a security group for each EC2 instance. Define rules for inbound and outbound traffic for every instance. Review security groups regularly. Eliminate unused security groups. Use Elastic IP addresses to mask instance failures and enable instant remapping. For increased security, use VPCs to deploy your instances. Storage (S3) Amazon S3, or Simple Storage Service, is a cloud-native object storage platform. It allows users to store and manage large amounts of data within resources called buckets. Auditing S3 involves: Analyze IAM access controls Evaluate access controls given using Access Control Lists (ACLs) and Query String Authentication Re-evaluate bucket policies to ensure adequate object permissions Check S3 audit logs to identify any anomalies Evaluate S3 security configurations like Block Public Access, Object Ownership, and PrivateLink. Use Amazon Macie to get alerts when S3 buckets are publically accessible, unencrypted, or replicated. Mobile apps Mobile applications within your AWS environment must be audited. Organizations can do this by: Review mobile apps to ensure none of them contain access keys. Use MFA for all mobile apps. Check for and remove all permanent credentials for applications. Use temporary credentials so you can frequently change security keys. Enable multiple login methods using providers like Google, Amazon, and Facebook. Threat detection and incident response The AWS cloud infrastructure must include mechanisms to detect and react to security incidents. To do this, organizations and auditors can: Create audit logs by enabling AWS CloudTrail, storing and access logs in S3, CloudWatch logs, WAF logs, and VPC Flow Logs. Use audit logs to track assessment trails and detect any deviations or notable events Review logging and monitoring policies and procedures Ensure all AWS services, including EC2 instances, are monitored and logged Install logging mechanisms to centralize logs on one server and in proper formats Implement a dynamic Incident Response Plan for AWS services. Include policies to mitigate cybersecurity incidents and help with data recovery. Include AWS in your Business Continuity Plan (BCP) to improve disaster recovery. Dictate policies related to preparedness, crisis management elements, and more. Top tools for an AWS audit You can use any number of AWS security options and tools as you perform your audit. However, a Cloud-Native Application Protection Platform (CNAPP) like Prevasio is the ideal tool for an AWS audit. It combines the features of multiple cloud security solutions and automates security management. Prevasio increases efficiency by enabling fast and secure agentless cloud security configuration management. It supports Amazon AWS, Microsoft Azure, and Google Cloud. All security issues across these vendors are shown on a single dashboard. You can also perform a manual comprehensive AWS audit using multiple AWS tools: Identity and access management: AWS IAM and AWS IAM Access Analyzer Data protection: AWS Macie and AWS Secrets Manager Detection and monitoring: AWS Security Hub, Amazon GuardDuty, AWS Config, AWS CloudTrail, AWS CloudWatch Infrastructure protection: AWS Web Application Firewall, AWS Shield A manual audit of different AWS elements can be time-consuming. Auditors must juggle multiple tools and gather information from various reports. A dynamic platform like Prevasio speeds up this process. It scans all elements within your AWS systems in minutes and instantly displays any threats on the dashboard. The bottom line on AWS security audits Security audits are essential for businesses using AWS infrastructures. Maintaining network security and compliance via an audit prevents data breaches, prevents cyberattacks, and protects valuable assets. A manual audit using AWS tools can be done to ensure safety. However, an audit of all AWS systems and processes using Prevasio is more comprehensive and reliable. It helps you identify threats faster and streamlines the security management of your cloud system. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

bottom of page