top of page

Search results

675 results found with an empty search

  • AlgoSec | Sunburst Backdoor, Part II: DGA & The List of Victims

    Previous Part of the analysis is available here. Next Part of the analysis is available here. Update from 19 December 2020: ‍Prevasio... Cloud Security Sunburst Backdoor, Part II: DGA & The List of Victims Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/17/20 Published Previous Part of the analysis is available here . Next Part of the analysis is available here . Update from 19 December 2020: Prevasio would like to thank Zetalytics for providing us with an updated (larger) list of passive (historic) DNS queries for the domains generated by the malware. As described in the first part of our analysis, the DGA (Domain Generation Algorithm) of the Sunburst backdoor produces a domain name that may look like: fivu4vjamve5vfrtn2huov[.]appsync-api.us-west-2[.]avsvmcloud[.]com The first part of the domain name (before the first dot) consists of a 16-character random string, appended with an encoded computer’s domain name. This is the domain in which the local computer is registered. From the example string above, we can conclude that the encoded computer’s domain starts from the 17th character and up until the dot (highlighted in yellow): fivu4vjamve5vfrt n2huov In order to encode a local computer’s domain name, the malware uses one of 2 simple methods: Method 1 : a substitution table, if the domain name consists of small letters, digits, or special characters ‘-‘, ‘_’, ‘.’ Method 2 : base64 with a custom alphabet, in case of capital letters present in the domain name Method 1 In our example, the encoded domain name is “n2huov” . As it does not have any capital letters, the malware encodes it with a substitution table “rq3gsalt6u1iyfzop572d49bnx8cvmkewhj” . For each character in the domain name, the encoder replaces it with a character located in the substitution table four characters right from the original character. In order to decode the name back, all we have to do is to replace each encoded character with another character, located in the substitution table four characters left from the original character. To illustrate this method, imagine that the original substitution table is printed on a paper strip and then covered with a card with 6 perforated windows. Above each window, there is a sticker note with a number on it, to reflect the order of characters in the word “n2huov” , where ‘n’ is #1, ‘2’ is #2, ‘h’ is #3 and so on: Once the paper strip is pulled by 4 characters right, the perforated windows will reveal a different word underneath the card: “domain” , where ‘d’ is #1, ‘o’ is #2, ‘m’ is #3, etc.: A special case is reserved for such characters as ‘0’ , ‘-‘ , ‘_’ , ‘.’ . These characters are encoded with ‘0’ , followed with a character from the substitution table. An index of that character in the substitution table, divided by 4, provides an index within the string “0_-.” . The following snippet in C# illustrates how an encoded string can be decoded: static string decode_domain( string s) { string table = "rq3gsalt6u1iyfzop572d49bnx8cvmkewhj" ; string result = "" ; for ( int i = 0 ; i < s.Length; i++) { if (s[i] != '0' ) { result += table[(table.IndexOf(s[i]) + table.Length - 4 ) % table.Length]; } else { if (i < s.Length - 1 ) { if (table.Contains(s[i + 1 ])) { result += "0_-." [table.IndexOf(s[i + 1 ]) % 4 ]; } else { break ; } } i++; } } return result; } Method 2 This method is a standard base64 encoder with a custom alphabet “ph2eifo3n5utg1j8d94qrvbmk0sal76c” . Here is a snippet in C# that provides a decoder: public static string FromBase32String( string str) { string table = "ph2eifo3n5utg1j8d94qrvbmk0sal76c" ; int numBytes = str.Length * 5 / 8 ; byte [] bytes = new Byte[numBytes]; int bit_buffer; int currentCharIndex; int bits_in_buffer; if (str.Length < 3 ) { bytes[ 0 ] = ( byte )(table.IndexOf(str[ 0 ]) | table.IndexOf(str[ 1 ]) << 5 ); return System.Text.Encoding.UTF8.GetString(bytes); } bit_buffer = (table.IndexOf(str[ 0 ]) | table.IndexOf(str[ 1 ]) << 5 ); bits_in_buffer = 10 ; currentCharIndex = 2 ; for ( int i = 0 ; i < bytes.Length; i++) { bytes[i] = ( byte )bit_buffer; bit_buffer >>= 8 ; bits_in_buffer -= 8 ; while (bits_in_buffer < 8 && currentCharIndex < str.Length) { bit_buffer |= table.IndexOf(str[currentCharIndex++]) << bits_in_buffer; bits_in_buffer += 5 ; } } return System.Text.Encoding.UTF8.GetString(bytes); } When the malware encodes a domain using Method 2, it prepends the encrypted string with a double zero character: “00” . Following that, extracting a domain part of an encoded domain name (long form) is as simple as: static string get_domain_part( string s) { int i = s.IndexOf( ".appsync-api" ); if (i > 0 ) { s = s.Substring( 0 , i); if (s.Length > 16 ) { return s.Substring( 16 ); } } return "" ; } Once the domain part is extracted, the decoded domain name can be obtained by using Method 1 or Method 2, as explained above: if (domain.StartsWith( "00" )) { decoded = FromBase32String(domain.Substring( 2 )); } else { decoded = decode_domain(domain); } Decrypting the Victims’ Domain Names To see the decoder in action, let’s select 2 lists: List #1 Bambenek Consulting has provided a list of observed hostnames for the DGA domain. List #2 The second list has surfaced in a Paste bin paste , allegedly sourced from Zetalytics / Zonecruncher . NOTE: This list is fairly ‘noisy’, as it has non-decodable domain names. By feeding both lists to our decoder, we can now obtain a list of decoded domains, that could have been generated by the victims of the Sunburst backdoor. DISCLAIMER: It is not clear if the provided lists contain valid domain names that indeed belong to the victims. It is quite possible that the encoded domain names were produced by third-party tools, sandboxes, or by researchers that investigated and analysed the backdoor. The decoded domain names are provided purely as a reverse engineering exercise. The resulting list was manually processed to eliminate noise, and to exclude duplicate entries. Following that, we have made an attempt to map the obtained domain names to the company names, using Google search. Reader’s discretion is advised as such mappings could be inaccurate. Decoded Domain Mapping (Could Be Inaccurate) hgvc.com Hilton Grand Vacations Amerisaf AMERISAFE, Inc. kcpl.com Kansas City Power and Light Company SFBALLET San Francisco Ballet scif.com State Compensation Insurance Fund LOGOSTEC Logostec Ventilação Industrial ARYZTA.C ARYZTA Food Solutions bmrn.com BioMarin Pharmaceutical Inc. AHCCCS.S Arizona Health Care Cost Containment System nnge.org Next Generation Global Education cree.com Cree, Inc (semiconductor products) calsb.org The State Bar of California rbe.sk.ca Regina Public Schools cisco.com Cisco Systems pcsco.com Professional Computer Systems barrie.ca City of Barrie ripta.com Rhode Island Public Transit Authority uncity.dk UN City (Building in Denmark) bisco.int Boambee Industrial Supplies (Bisco) haifa.edu University of Haifa smsnet.pl SMSNET, Poland fcmat.org Fiscal Crisis and Management Assistance Team wiley.com Wiley (publishing) ciena.com Ciena (networking systems) belkin.com Belkin spsd.sk.ca Saskatoon Public Schools pqcorp.com PQ Corporation ftfcu.corp First Tech Federal Credit Union bop.com.pk The Bank of Punjab nvidia.com NVidia insead.org INSEAD (non-profit, private university) usd373.org Newton Public Schools agloan.ads American AgCredit pageaz.gov City of Page jarvis.lab Erich Jarvis Lab ch2news.tv Channel 2 (Israeli TV channel) bgeltd.com Bradford / Hammacher Remote Support Software dsh.ca.gov California Department of State Hospitals dotcomm.org Douglas Omaha Technology Commission sc.pima.gov Arizona Superior Court in Pima County itps.uk.net IT Professional Services, UK moncton.loc City of Moncton acmedctr.ad Alameda Health System csci-va.com Computer Systems Center Incorporated keyano.local Keyano College uis.kent.edu Kent State University alm.brand.dk Sydbank Group (Banking, Denmark) ironform.com Ironform (metal fabrication) corp.ncr.com NCR Corporation ap.serco.com Serco Asia Pacific int.sap.corp SAP mmhs-fla.org Cleveland Clinic Martin Health nswhealth.net NSW Health mixonhill.com Mixon Hill (intelligent transportation systems) bcofsa.com.ar Banco de Formosa ci.dublin.ca. Dublin, City in California siskiyous.edu College of the Siskiyous weioffice.com Walton Family Foundation ecobank.group Ecobank Group (Africa) corp.sana.com Sana Biotechnology med.ds.osd.mi US Gov Information System wz.hasbro.com Hasbro (Toy company) its.iastate.ed Iowa State University amr.corp.intel Intel cds.capilanou. Capilano University e-idsolutions. IDSolutions (video conferencing) helixwater.org Helix Water District detmir-group.r Detsky Mir (Russian children’s retailer) int.lukoil-int LUKOIL (Oil and gas company, Russia) ad.azarthritis Arizona Arthritis and Rheumatology Associates net.vestfor.dk Vestforbrænding allegronet.co. Allegronet (Cloud based services, Israel) us.deloitte.co Deloitte central.pima.g Pima County Government city.kingston. City of Kingston staff.technion Technion – Israel Institute of Technology airquality.org Sacramento Metropolitan Air Quality Management District phabahamas.org Public Hospitals Authority, Caribbean parametrix.com Parametrix (Engineering) ad.checkpoint. Check Point corp.riotinto. Rio Tinto (Mining company, Australia) intra.rakuten. Rakuten us.rwbaird.com Robert W. Baird & Co. (Financial services) ville.terrebonn Ville de Terrebonne woodruff-sawyer Woodruff-Sawyer & Co., Inc. fisherbartoninc Fisher Barton Group banccentral.com BancCentral Financial Services Corp. taylorfarms.com Taylor Fresh Foods neophotonics.co NeoPhotonics (optoelectronic devices) gloucesterva.ne Gloucester County magnoliaisd.loc Magnolia Independent School District zippertubing.co Zippertubing (Manufacturing) milledgeville.l Milledgeville (City in Georgia) digitalreachinc Digital Reach, Inc. deniz.denizbank DenizBank thoughtspot.int ThoughtSpot (Business intelligence) lufkintexas.net Lufkin (City in Texas) digitalsense.co Digital Sense (Cloud Services) wrbaustralia.ad W. R. Berkley Insurance Australia christieclinic. Christie Clinic Telehealth signaturebank.l Signature Bank dufferincounty. Dufferin County mountsinai.hosp Mount Sinai Hospital securview.local Securview Victory (Video Interface technology) weber-kunststof Weber Kunststoftechniek parentpay.local ParentPay (Cashless Payments) europapier.inte Europapier International AG molsoncoors.com Molson Coors Beverage Company fujitsugeneral. Fujitsu General cityofsacramento City of Sacramento ninewellshospita Ninewells Hospital fortsmithlibrary Fort Smith Public Library dokkenengineerin Dokken Engineering vantagedatacente Vantage Data Centers friendshipstateb Friendship State Bank clinicasierravis Clinica Sierra Vista ftsillapachecasi Apache Casino Hotel voceracommunicat Vocera (clinical communications) mutualofomahabanMutual of Omaha Bank Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Enhancing Zero Trust WP - AlgoSec

    Enhancing Zero Trust WP Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Cloud network security report 2025 - AlgoSec

    Cloud network security report 2025 Datasheet Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Multiple AWS accounts: Security best practices - AlgoSec

    Multiple AWS accounts: Security best practices E-BOOK Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • An application-centric approach to firewall rule recertification: Challenges and benefits - AlgoSec

    An application-centric approach to firewall rule recertification: Challenges and benefits Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | Managing the switch – Making the move to Cisco Meraki

    Challenges with managing Cisco Meraki in a complex enterprise environment We have worked closely with Cisco for many years in large... Application Connectivity Management Managing the switch – Making the move to Cisco Meraki Jeremiah Cornelius 2 min read Jeremiah Cornelius Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/4/24 Published Challenges with managing Cisco Meraki in a complex enterprise environment We have worked closely with Cisco for many years in large complex environments and have developed integrations to support a variety of Cisco solutions for our joint customers. In recent years we have seen an increased interest in the use of Cisco Meraki devices by enterprises that are also AlgoSec customers. In this post, we will highlight some of the AlgoSec capabilities that can quickly add value for Meraki customers. Meeting the Enterprise The Cisco Meraki MX is a multifunctional security and SD-WAN enterprise appliance with a wide set of capabilities to address multiple use cases—from an all-in-one device. Organizations across all industries rely on the MX to deliver secure connectivity to hub locations or multi cloud environments. The MX is 100% cloud-managed, so installation and remote management are truly zero-touch, making it ideal for distributed branches, campuses, and data center locations. In our talks with AlgoSec customers and partner architects, it is evident that the benefits that originally made Meraki MX popular in commercial deployments were just as appealing to enterprises. Many enterprises are now faced with waves of expansion in employees working from home, and burgeoning demands for scalable remote access – along with increasing network demands by regional centers. The leader of one security team I spoke with put it very well, “We are deploying to 1,200 locations in four global regions, planned to be 1,500 by year’s end. The choice of Meraki is for us a ‘no-brainer.’ If you haven’t already, I know that you’re going to see this become a more popular option with many big operations.” Natural Companions – AlgoSec ASMS and Cisco Meraki-MX This is a natural situation to meet enhanced requirements with AlgoSec ASMS — reinforcing Meraki’s impressive capabilities and scale as a combined, enterprise-class solution. ASMS brings to the table traffic planning and visualization, rules optimization and management, and a solution to address enterprise-level requirements for policy reporting and compliance auditing. In AlgoSec, we’re proud of AlgoSec FireFlow’s ability to model the security-connected state of any given endpoints across an entire enterprise. Now our customers with Meraki MX can extend this technology that they know and trust, analyze real traffic in complex deployments, and acquire an understanding of the requirements and impact of changes delivered to their users and applications that are connected by Meraki deployments. As it’s unlikely that your needs, or those of any data center and enterprise, are met by a single vendor and model, AlgoSec unifies operations of the Meraki-MX with those of the other technologies, such as enterprise NGFW and software-defined network fabrics. Our application-centric approach means that Meraki MX can be a component in delivering solutions for zero-trust and microsegmentation with other Cisco technology like Cisco ACI, and other third parties. Cisco Meraki– Product Demo If all of this sounds interesting, take a look for yourself to see how AlgoSec helps with common challenges in these enterprise environments. More Where This Came From The AlgoSec integration with Cisco Meraki-MX is delivering solutions our customers want. If you want to discover more about the Meraki and AlgoSec joint solution, contact us at AlgoSec! We work together with Cisco teams and resellers and will be glad to schedule a meeting to share more details or walk through a more in depth demo. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Best Practices for Amazon Web Services Security | algosec

    Security Policy Management with Professor Wool Best Practices for Amazon Web Services Security Best Practices for Amazon Web Services (AWS) Security is a whiteboard-style series of lessons that examine the challenges of and provide technical tips for managing security across hybrid data centers utilizing the AWS IaaS platform. Lesson 1 In this lesson Professor Wool provides an overview of Amazon Web Services (AWS) Security Groups and highlights some of the differences between Security Groups and traditional firewalls. The lesson continues by explaining some of the unique features of AWS and the challenges and benefits of being able to apply multiple Security Groups to a single instance. The Fundamentals of AWS Security Groups Watch Lesson 2 Outbound traffic rules in AWS Security Groups are, by default, very wide and insecure. In addition, during the set-up process for AWS Security Groups the user is not intuitively guided through a set up process for outbound rules – the user must do this manually. In this lesson, Professor Wool, highlights the limitations and consequences of leaving the default rules in place, and provides recommendations on how to define outbound rules in AWS Security Groups in order to securely control and filter outbound traffic and protect against data leaks. Protect Outbound Traffic in an AWS Hybrid Environment Watch Lesson 3 Once you start using AWS for production applications, auditing and compliance considerations come into play, especially if these applications are processing data that is subject to regulations such as PCI, HIPAA, SOX etc. In this lesson, Professor Wool reviews AWS’s own auditing tools, CloudWatch and CloudTrail, which are useful for cloud-based applications. However if you are running a hybrid data center, you will likely need to augment these tools with solutions that can provide reporting, visibility and change monitoring across the entire environment. Professor Wool provides some recommendations for key features and functionally you’ll need to ensure compliance, and tips on what the auditors are looking for. Change Management, Auditing and Compliance in an AWS Hybrid Environment Watch Lesson 4 In this lesson Professor Wool examines the differences between Amazon's Security Groups and Network Access Control Lists (NACLs), and provides some tips and tricks on how to use them together for the most effective and flexible traffic filtering for your enterprise. Using AWS Network ACLs for Enhanced Traffic Filtering Watch Lesson 5 AWS security is very flexible and granular, however it has some limitations in terms of the number of rules you can have in a NACL and security group. In this lesson Professor Wool explains how to combine security groups and NACLs filtering capabilities in order to bypass these capacity limitations and achieve the granular filtering needed to secure enterprise organizations. Combining Security Groups and Network ACLs to Bypass AWS Capacity Limitations Watch Lesson 6 In this whiteboard video lesson Professor Wool provides best practices for performing security audits across your AWS estate. The Right Way to Audit AWS Policies Watch Lesson 7 How to Intelligently Select the Security Groups to Modify When Managing Changes in your AWS Watch Lesson 8 Learn more about AlgoSec at http://www.algosec.com and read Professor Wool's blog posts at http://blog.algosec.com How to Manage Dynamic Objects in Cloud Environments Watch Have a Question for Professor Wool? Ask him now Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Migrate policies to Cisco ACI with AlgoSec - AlgoSec

    Migrate policies to Cisco ACI with AlgoSec Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Advanced Cyber Threat and Incident Management | algosec

    Security Policy Management with Professor Wool Advanced Cyber Threat and Incident Management Advanced Cyber Threat and Incident Management is a whiteboard-style series of lessons that examine some of the challenges and provide technical tips for helping organizations detect and quickly respond to cyber-attacks while minimizing the impact on the business. Lesson 1 SIEM solutions collect and analyze logs generated by the technology infrastructure, security systems and business applications. The Security Operations Center (SOC) team uses this information to identify and flag suspicious activity for further investigation. In this lesson, Professor Wool explains why it’s important to connect the information collected by the SIEM with other databases that provide information on application connectivity, in order to make informed decisions on the level of risk to the business, and the steps the SOC needs to take to neutralize the attack. How to bring business context into incident response Watch Lesson 2 In this lesson Professor Wool discusses the need for reachability analysis in order to assess the severity of the threat and potential impact of an incident. Professor Wool explains how to use traffic simulations to map connectivity paths to/from compromised servers and to/from the internet. By mapping the potential lateral movement paths of an attacker across the network, the SOC team can, for example, proactively take action to prevent data exfiltration or block incoming communications with Command and Control servers. Bringing reachability analysis into incident response Watch Have a Question for Professor Wool? Ask him now Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | The confluence of cloud and AI: charting a secure path in the age of intelligent innovation

    The fusion of Cloud and AI is more than just a technological advancement; it’s a paradigm shift. As businesses harness the combined power... Hybrid Cloud Security Management The confluence of cloud and AI: charting a secure path in the age of intelligent innovation Adel Osta Dadan 2 min read Adel Osta Dadan Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 9/20/23 Published The fusion of Cloud and AI is more than just a technological advancement; it’s a paradigm shift. As businesses harness the combined power of these transformative technologies, the importance of a security-centric approach becomes increasingly evident. This exploration delves deeper into the strategic significance of navigating the Cloud-AI nexus with a focus on security and innovation. Cloud and AI: catalysts for business transformation The cloud provides the foundational infrastructure, while AI infuses intelligence, making systems smarter and more responsive. Together, they’re reshaping industries, driving efficiencies, and creating new business models. However, with these opportunities come challenges. Ensuring robust security in this intertwined environment is not just a technical necessity but a strategic imperative. As AI algorithms process vast datasets in the cloud, businesses must prioritize the protection and integrity of this data to build and maintain trust. Building trust in intelligent systems In the age of AI, data isn’t just processed; it’s interpreted, analyzed, and acted upon. This autonomous decision-making demands a higher level of trust. Ensuring the confidentiality, integrity, and availability of data in the cloud becomes paramount. Beyond just data protection, it’s about ensuring that AI-driven decisions, which can have real-world implications, are made based on secure and untampered data. This trust forms the bedrock of AI’s value proposition in the cloud. Leadership in the Cloud-AI era Modern leaders are not just visionaries; they’re also gatekeepers. They stand at the intersection of innovation and security, ensuring that as their organizations harness AI in the cloud, ethical considerations and security protocols are front and center. This dual role is challenging but essential. As AI-driven applications become integral to business operations, leaders must champion a culture where security and innovation coexist harmoniously. Seamless integration and the role of DevSecOps Developing AI applications in the cloud is a complex endeavor. It requires a seamless integration of development, operations, and crucially, security. Enter DevSecOps. This approach ensures that security is embedded at every stage of the development lifecycle. From training AI models to deploying them in cloud environments, security considerations are integral, ensuring that the innovations are both groundbreaking and grounded in security. Collaborative security for collective intelligence AI’s strength lies in its ability to derive insights from vast datasets. In the interconnected world of the cloud, data flows seamlessly across boundaries, making collaborative security vital. Protecting this collective intelligence requires a unified approach, where security protocols are integrated across platforms, tools, and teams. Future-proofing the Cloud-AI strategy The technological horizon is ever-evolving. The fusion of Cloud and AI is just the beginning, and as businesses look ahead, embedding security into their strategies is non-negotiable. It’s about ensuring that as new technologies emerge and integrate with existing systems, the foundation remains secure and resilient. AlgoSec’s unique value proposition At AlgoSec, we understand the intricacies of the Cloud-AI landscape. Our application-based approach ensures that businesses have complete visibility into their digital assets. With AlgoSec, organizations gain a clear view of their application connectivity, ensuring that security policies align with business processes. As AI integrates deeper into cloud strategies, AlgoSec’s solutions empower businesses to innovate confidently, backed by a robust security framework. Our platform provides holistic, business-level visibility across the entire network infrastructure. With features like AlgoSec AppViz and AppChange, businesses can seamlessly identify network security vulnerabilities, plan migrations, accelerate troubleshooting, and adhere to the highest compliance standards. By taking an application-centric approach to security policy management, AlgoSec bridges the gap between IT teams and application delivery teams, fostering collaboration and ensuring a heightened security posture. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

bottom of page