top of page

Search results

675 results found with an empty search

  • AlgoSec - Case for Convergence - AlgoSec

    AlgoSec - Case for Convergence Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | The shocking truth about Network Cloud Security in 2025

    The cloud's come a long way, baby.  Remember when it was just a buzzword tossed around in boardrooms? Now, it's the engine powering our... Cloud Network Security The shocking truth about Network Cloud Security in 2025 Iris Stein 2 min read Iris Stein Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 2/10/25 Published The cloud's come a long way, baby. Remember when it was just a buzzword tossed around in boardrooms? Now, it's the engine powering our digital world. But this rapid evolution has left many cloud network security managers grappling with a new reality – and a bit of an identity crisis. Feeling the heat? You're not alone. The demands on cloud security professionals are skyrocketing. We're expected to be masters of hybrid environments, navigate a widening skills gap, and stay ahead of threats evolving at warp speed. Let's break down the challenges: Hybrid is the new normal: Gartner predicts that by 2025, a whopping 90% of organizations will be running hybrid cloud environments. This means juggling the complexities of both on-premises and cloud security, demanding a broader skillset and a more holistic approach. Forget silos – we need to be fluent in both worlds. The skills gap is a chasm: (ISC)²'s 2022 Cybersecurity Workforce Study revealed a global cybersecurity workforce gap of 3.4 million. This talent shortage puts immense pressure on existing security professionals to do more with less. We're stretched thin, and something's gotta give. Threats are evolving faster than ever: The cloud introduces new attack vectors and vulnerabilities we haven't even imagined yet. McAfee reported a staggering 630% increase in cloud-native attacks in 2022. Staying ahead of these threats requires constant vigilance, continuous learning, and a proactive mindset. Level up your cloud security game So, how can you thrive in this chaotic environment and ensure your career (and your company's security posture) doesn't go down in flames? Here's your survival guide: Automate or die: Manual processes are a relic of the past. Embrace automation tools to manage complex security policies, respond to threats faster, and free up your time for strategic initiatives. Think of it as your force multiplier in the fight against complexity. Become a cloud-native ninja: Deepen your understanding of cloud platforms like AWS, Azure, and GCP. Master their security features, best practices, and quirks. The more you know, the more you can protect. Sharpen your soft skills: Technical chops alone won't cut it. Communication, collaboration, and problem-solving are critical. You need to clearly articulate security risks to stakeholders, build bridges with different teams, and drive solutions. Never stop learning: The cloud is a moving target. Continuous learning is no longer optional – it's essential. Attend conferences, devour online courses, and stay informed about the latest security trends and technologies. Complacency is the enemy. Introducing AlgoSec Cloud Enterprise (ACE): Your cloud security wingman Let's face it, managing security across a hybrid cloud environment can feel like herding cats. That's where AlgoSec Cloud Enterprise (ACE) steps in. ACE is a comprehensive cloud network security suite that gives you the visibility, automation, and control you need to secure your applications and keep the business humming. Gain X-Ray Vision into Your Hybrid Cloud: See everything, know everything. ACE gives you complete visibility across your entire environment, from on-premises servers to cloud platforms. No more blind spots, no more surprises. Enforce Security Policies Like a Boss: Consistent security policies are the bedrock of a strong security posture. ACE makes it easy to define and enforce policies across all your applications, no matter where they reside. Conquer Compliance with Confidence: Staying compliant can feel like a never-ending struggle. ACE simplifies compliance management across your hybrid environment, helping you meet regulatory requirements without breaking a sweat. Accelerate App Delivery Without Sacrificing Security: In today's fast-paced world, speed is key. ACE empowers you to accelerate application delivery without compromising security. Move fast, break things – but not your security posture. Proactive Risk Prevention: ACE goes beyond basic security checks with over 150+ network security policy risk checks, proactively identifying and mitigating potential vulnerabilities before they can be exploited. Ready to unlock the true power of the cloud while fortifying your defenses? Learn more about AlgoSec Cloud Enterprise today and take control of your cloud security destiny. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | How To Prevent Firewall Breaches (The 2024 Guide)

    Properly configured firewalls are vital in any comprehensive cybersecurity strategy. However, even the most robust configurations can be... Uncategorized How To Prevent Firewall Breaches (The 2024 Guide) Tsippi Dach 2 min read Tsippi Dach Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 1/11/24 Published Properly configured firewalls are vital in any comprehensive cybersecurity strategy. However, even the most robust configurations can be vulnerable to exploitation by attackers. No single security measure can offer absolute protection against all cyber threats and data security risks . To mitigate these risks, it’s crucial to understand how cybercriminals exploit firewall vulnerabilities. The more you know about their tactics, techniques, and procedures, the better-equipped you are to implement security policies that successfully block unauthorized access to network assets. In this guide, you’ll understand the common cyber threats that target enterprise firewall systems with the goal of helping you understand how attackers exploit misconfigurations and human vulnerabilities. Use this information to protect your network from a firewall breach. Understanding 6 Tactics Cybercriminals Use to Breach Firewalls 1. DNS Leaks Your firewall’s primary use is making sure unauthorized users do not gain access to your private network and the sensitive information it contains. But firewall rules can go both ways – preventing sensitive data from leaving the network is just as important. If enterprise security teams neglect to configure their firewalls to inspect outgoing traffic, cybercriminals can intercept this traffic and use it to find gaps in your security systems. DNS traffic is particularly susceptible to this approach because it shows a list of websites users on your network regularly visit. A hacker could use this information to create a spoofed version of a frequently visited website. For example, they might notice your organization’s employees visit a third-party website to attend training webinars. Registering a fake version of the training website and collecting employee login credentials would be simple. If your firewall doesn’t inspect DNS data and confirm connections to new IP addresses, you may never know. DNS leaks may also reveal the IP addresses and endpoint metadata of the device used to make an outgoing connection. This would give cybercriminals the ability to see what kind of hardware your organization’s employees use to connect to external websites. With that information in hand, impersonating managed service providers or other third-party partners is easy. Some DNS leaks even contain timestamp data, telling attackers exactly when users requested access to external web assets. How to protect yourself against DNS leaks Proper firewall configuration is key to preventing DNS-related security incidents. Your organization’s firewalls should provide observability and access control to both incoming and outgoing traffic. Connections to servers known for hosting malware and cybercrime assets should be blocked entirely. Connections to servers without a known reputation should be monitored closely. In a Zero Trust environment , even connections to known servers should benefit from scrutiny using an identity-based security framework. Don’t forget that apps can connect to external resources, too. Consider deploying web application firewalls configured to prevent DNS leaks when connecting to third-party assets and servers. You may also wish to update your security policy to require employees to use VPNs when connecting to external resources. An encrypted VPN connection can prevent DNS information from leaking, making it much harder for cybercriminals to conduct reconnaissance on potential targets using DNS data. 2. Encrypted Injection Attacks Older, simpler firewalls analyze traffic by looking at different kinds of data packet metadata. This provides clear evidence of certain denial-of-service attacks, clear violations of network security policy , and some forms of malware and ransomware . They do not conduct deep packet inspection to identify the kind of content passing through the firewall. This provides cybercriminals with an easy way to bypass firewall rules and intrusion prevention systems – encryption . If malicious content is encrypted before it hits the firewall, it may go unnoticed by simple firewall rules. Only next-generation firewalls capable of handling encrypted data packets can determine whether this kind of traffic is secure or not. Cybercriminals often deliver encrypted injection attacks through email. Phishing emails may trick users into clicking on a malicious link that injects encrypted code into the endpoint device. The script won’t decode and run until after it passes the data security threshold posed by the firewall. After that, it is free to search for personal data, credit card information, and more. Many of these attacks will also bypass antivirus controls that don’t know how to handle encrypted data. Task automation solutions like Windows PowerShell are also susceptible to these kinds of attacks. Even sophisticated detection-based security solutions may fail to recognize encrypted injection attacks if they don’t have the keys necessary to decrypt incoming data. How to protect yourself against encrypted injection attacks Deep packet inspection is one of the most valuable features next-generation firewalls provide to security teams. Industry-leading firewall vendors equip their products with the ability to decrypt and inspect traffic. This allows the firewall to prevent malicious content from entering the network through encrypted traffic, and it can also prevent sensitive encrypted data – like login credentials – from leaving the network. These capabilities are unique to next-generation firewalls and can’t be easily replaced with other solutions. Manufacturers and developers have to equip their firewalls with public-key cryptography capabilities and obtain data from certificate authorities in order to inspect encrypted traffic and do this. 3. Compromised Public Wi-Fi Public Wi-Fi networks are a well-known security threat for individuals and organizations alike. Anyone who logs into a password-protected account on public Wi-Fi at an airport or coffee shop runs the risk of sending their authentication information directly to hackers. Compromised public Wi-Fi also presents a lesser-known threat to security teams at enterprise organizations – it may help hackers breach firewalls. If a remote employee logs into a business account or other asset from a compromised public Wi-Fi connection, hackers can see all the data transmitted through that connection. This may give them the ability to steal account login details or spoof endpoint devices and defeat multi-factor authentication. Even password-protected private Wi-Fi connections can be abused in this way. Some Wi-Fi networks still use outdated WEP and WPA security protocols that have well-known vulnerabilities. Exploiting these weaknesses to take control of a WEP or WPA-protected network is trivial for hackers. The newer WPA2 and WPA3 standards are much more resilient against these kinds of attacks. While public Wi-Fi dangers usually bring remote workers and third-party service vendors to mind, on-premises networks are just as susceptible. Nothing prevents a hacker from gaining access to public Wi-Fi networks in retail stores, receptions, or other areas frequented by customers and employees. How to protect yourself against compromised public Wi-Fi attacks First, you must enforce security policies that only allow Wi-Fi traffic secured by WPA2 and WPA3 protocols. Hardware Wi-Fi routers that do not support these protocols must be replaced. This grants a minimum level of security to protected Wi-Fi networks. Next, all remote connections made over public Wi-Fi networks must be made using a secure VPN. This will encrypt the data that the public Wi-Fi router handles, making it impossible for a hacker to intercept without gaining access to the VPN’s secret decryption key. This doesn’t guarantee your network will be safe from attacks, but it improves your security posture considerably. 4. IoT Infrastructure Attacks Smartwatches, voice-operated speakers, and many automated office products make up the Internet of Things (IoT) segment of your network. Your organization may be using cloud-enriched access control systems, cost-efficient smart heating systems, and much more. Any Wi-Fi-enabled hardware capable of automation can safely be included in this category. However, these devices often fly under the radar of security team’s detection tools, which often focus on user traffic. If hackers compromise one of these devices, they may be able to move laterally through the network until they arrive at a segment that handles sensitive information. This process can take time, which is why many incident response teams do not consider suspicious IoT traffic to be a high-severity issue. IoT endpoints themselves rarely process sensitive data on their own, so it’s easy to overlook potential vulnerabilities and even ignore active attacks as long as the organization’s mission-critical assets aren’t impacted. However, hackers can expand their control over IoT devices and transform them into botnets capable of running denial-of-service attacks. These distributed denial-of-service (DDoS) attacks are much larger and more dangerous, and they are growing in popularity among cybercriminals. Botnet traffic associated with DDoS attacks on IoT networks has increased five-fold over the past year , showing just how promising it is for hackers. How to protect yourself against IoT infrastructure attacks Proper network segmentation is vital for preventing IoT infrastructure attacks . Your organization’s IoT devices should be secured on a network segment that is isolated from the rest of the network. If attackers do compromise the entire network, you should be protected from the risk of losing sensitive data from critical business assets. Ideally, this protection will be enforced with a strong set of firewalls managing the connection between your IoT subnetwork and the rest of your network. You may need to create custom rules that take your unique security risk profile and fleet of internet-connected devices into account. There are very few situations in which one-size-fits-all rulemaking works, and this is not one of them. All IoT devices – no matter how small or insignificant – should be protected by your firewall and other cybersecurity solutions . Never let these devices connect directly to the Internet through an unsecured channel. If they do, they provide attackers with a clear path to circumvent your firewalls and gain access to the rest of your network with ease. 5. Social Engineering and Phishing Social engineering attacks refer to a broad range of deceptive practices used by hackers to gain access to victims’ assets. What makes this approach special is that it does not necessarily depend on technical expertise. Instead of trying to hack your systems, cybercriminals are trying to hack your employees and company policies to carry out their attacks. Email phishing is one of the most common examples. In a typical phishing attack , hackers may spoof an email server to make it look like they are sending emails from a high-level executive in the company you work for. They can then impersonate this executive and demand junior accountants pay fictitious invoices or send sensitive customer data to email accounts controlled by threat actors. Other forms of social engineering can use your organization’s tech support line against itself. Attackers may pretend to represent large customer accounts and will leverage this ruse to gain information about how your company works. They may impersonate a third-party vendor and request confidential information that the vendor would normally have access to. These attacks span the range from simple trickery to elaborate confidence scams. Protecting against them can be incredibly challenging, and your firewall capabilities can make a significant difference in your overall state of readiness. How to protect yourself against social engineering attacks Employee training is the top priority for protecting against social engineering attacks . When employees understand the company’s operating procedures and security policies, it’s much harder for social engineers to trick them. Ideally, training should also include in-depth examples of how phishing attacks work, what they look like, and what steps employees should take when contacted by people they don’t trust. 6. Sandbox Exploits Many organizations use sandbox solutions to prevent file-based malware attacks. Sandboxes work by taking suspicious files and email attachments and opening them in a secure virtual environment before releasing them to users. The sandbox solution will observe how the file behaves and quarantine any file that shows malicious activity. In theory, this provides a powerful layer of defense against file-based attacks. But in practice, cybercriminals are well aware of how to bypass these solutions. For example, many sandbox solutions can’t open files over a certain size. Hackers who attach malicious code to large files can easily get through. Additionally, many forms of malware do not start executing malicious tasks the second they are activated. This delay can provide just enough of a buffer to get through a sandbox system. Some sophisticated forms of malware can even detect when they are being run in a sandbox environment – and will play the part of an innocent program until they are let loose inside the network. How to protect yourself against sandbox exploits Many next-generation firewalls include cloud-enabled sandboxing capable of running programs of arbitrary size for a potentially unlimited amount of time. More sophisticated sandbox solutions go to great lengths to mimic the system specifications of an actual endpoint so malware won’t know it is being run in a virtual environment. Organizations may also be able to overcome the limitations of the sandbox approach using Content Disarm and Reconstruction (CDR) techniques. This approach keeps potentially malicious files off the network entirely and only allows a reconstructed version of the file to enter the network. Since the new file is constructed from scratch, it will not contain any malware that may have been attached to the original file. Prevent firewall breaches with AlgoSec Managing firewalls manually can be overwhelming and time-consuming – especially when dealing with multiple firewall solutions. With the help of a firewall management solution , you easily configure firewall rules and manage configurations from a single dashboard. AlgoSec’s powerful firewall management solution integrates with your firewalls to deliver unified firewall policy management from a single location, thus streamlining the entire process. With AlgoSec, you can maintain clear visibility of your firewall ruleset, automate the management process, assess risk & optimize rulesets, streamline audit preparation & ensure compliance, and use APIs to access many features through web services. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • State of Network Security Report 2025 - AlgoSec

    State of Network Security Report 2025 Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | Navigating DORA: How to ensure your network security and compliance strategy is resilient

    The Digital Operational Resilience Act (DORA) is set to transform how financial institutions across the European Union manage and... Network Security Navigating DORA: How to ensure your network security and compliance strategy is resilient Joseph Hallman 2 min read Joseph Hallman Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/19/24 Published The Digital Operational Resilience Act (DORA) is set to transform how financial institutions across the European Union manage and mitigate ICT (Information and Communications Technology) risks. With the official compliance deadline in January 2025, organizations are under pressure to ensure their systems can withstand and recover from disruptions—an urgent priority in an increasingly digitized financial ecosystem. DORA introduces strict requirements for ICT risk management, incident reporting, and third-party oversight, aiming to bolster the operational resilience of financial firms. But what are the key deadlines and penalties, and how can organizations ensure they stay compliant? Key Timelines and Penalties Under DORA Compliance deadline: January 2025 – Financial firms and third-party ICT providers must have operational resilience frameworks in place by this deadline. Regular testing requirements – Companies will need to conduct resilience testing regularly, with critical institutions potentially facing enhanced testing requirements. Penalties for non-compliance – Fines for failing to comply with DORA’s mandates can be substantial. Non-compliance could lead to penalties of up to 2% of annual turnover, and repeated breaches could result in even higher sanctions or operational restrictions. Additionally, firms face reputational risks if they fail to meet incident reporting and recovery expectations. Long term effect- DORA increases senior management's responsibility for ICT risk oversight, driving stronger internal controls and accountability. Executives may face liability for failing to manage risks, reinforcing the focus on compliance and governance. These regulations create a dynamic challenge, as organizations not only need to meet the initial requirements by 2025, but also adapt to the changes as the standards continue to evolve over time. Firewall rule recertification The Digital Operational Resilience Act (DORA) emphasizes the need for financial institutions in the EU to ensure operational resilience in the face of technological risks. While DORA does not explicitly mandate firewall rule recertification , several of its broader requirements apply to the management and oversight of firewall rules and the overall security infrastructure, which would include periodic firewall rule recertification as part of maintaining a robust security posture. A few of the key areas relevant to firewall rules and the necessity for frequent recertification are highlighted below. ICT Risk Management Framework- Article 6 requires financial institutions to implement a comprehensive ICT (Information and Communication Technology) risk management framework. This includes identifying, managing, and regularly testing security policies, which would encompass firewall rules as they are a critical part of network security. Regular rule recertification helps to ensure that firewall configurations are up-to-date and aligned with security policies. Detection Solutions- Article 10 mandates that financial entities must implement effective detection solutions to identify anomalies, incidents, and cyberattacks. These solutions are required to have multiple layers of control, including defined alert thresholds that trigger incident response processes. Regular testing of these detection mechanisms is also essential to ensure their effectiveness, underscoring the need for ongoing evaluations of firewall configurations and rules ICT Business Continuity Policy- Article 11 emphasizes the importance of establishing a comprehensive ICT business continuity policy. This policy should include strategic approaches to risk management, particularly focusing on the security of ICT third-party providers. The requirement for regular testing of ICT business continuity plans, as stipulated in Article 11(6), indirectly highlights the need for frequent recertification of firewall rules. Organizations must document and test their plans at least once a year, ensuring that security measures, including firewalls, are up-to-date and effective against current threats. Backup, Restoration, and Recovery- Article 12 outlines the procedures for backup, restoration, and recovery, necessitating that these processes are tested periodically. Entities must ensure that their backup and recovery systems are segregated and effective, further supporting the requirement for regular recertification of security measures like firewalls to protect backup systems against cyber threats. Crisis Communication Plans- Article 14 details the obligations regarding communication during incidents, emphasizing that organizations must have plans in place to manage and communicate risks related to the security of their networks. This includes ensuring that firewall configurations are current and aligned with incident response protocols, necessitating regular reviews and recertifications to adapt to new threats and changes in the operational environment. In summary, firewall rule recertification supports the broader DORA requirements for maintaining ICT security, managing risks, and ensuring network resilience through regular oversight and updates of critical security configurations. How AlgoSec helps meet regulatory requirements AlgoSec provides the tools, intelligence, and automation necessary to help organizations comply with DORA and other regulatory requirements while streamlining ongoing risk management and security operations. Here’s how: 1. Comprehensive network visibility AlgoSec offers full visibility into your network, including detailed insights into the application connectivity that each firewall rule supports. This application-centric approach allows you to easily identify security gaps or vulnerabilities that could lead to non-compliance. With AlgoSec, you can maintain continuous alignment with regulatory requirements like DORA by ensuring every firewall rule is tied to an active, relevant application. This helps ensure compliance with DORA's ICT risk management framework, including continuous identification and management of security policies (Article 6). Benefit : With this deep visibility, you remain audit-ready with minimal effort, eliminating manual tracking of firewall rules and reducing the risk of errors. 2. Automated risk and compliance reports AlgoSec automates compliance checks across multiple regulations, continuously analyzing your security policies for misconfigurations or risks that may violate regulatory requirements. This includes automated recertification of firewall rules, ensuring your organization stays compliant with frameworks like DORA's ICT Risk Management (Article 6). Benefit : AlgoSec saves your team significant time and reduces the likelihood of costly mistakes, while automatically generating audit-ready reports that simplify your compliance efforts. 3. Incident reporting and response DORA mandates rapid detection, reporting, and recovery during incidents. AlgoSec’s intelligent platform enhances incident detection and response by automatically identifying firewall rules that may be outdated or insecure and aligning security policies with incident response protocols. This helps ensure compliance with DORA's Detection Solutions (Article 10) and Crisis Communication Plans (Article 14). Benefit : By accelerating response times and ensuring up-to-date firewall configurations, AlgoSec helps you meet reporting deadlines and mitigate breaches before they escalate. 4. Firewall policy management AlgoSec simplifies firewall management by taking an application-centric approach to recertifying firewall rules. Instead of manually reviewing outdated rules, AlgoSec ties each firewall rule to the specific application it serves, allowing for quick identification of redundant or risky rules. This ensures compliance with DORA’s requirement for regular rule recertification in both ICT risk management and continuity planning (Articles 6 and 11). Benefit : Continuous optimization of security policies ensures that only necessary and secure rules are in place, reducing network risk and maintaining compliance. 5. Managing third-party risk DORA emphasizes the need to oversee third-party ICT providers as part of a broader risk management framework. AlgoSec integrates seamlessly with other security tools, providing unified visibility into third-party risks across your hybrid environment. With its automated recertification processes, AlgoSec ensures that security policies governing third-party access are regularly reviewed and aligned with business needs. Benefit : This proactive management of third-party risks helps prevent potential breaches and ensures compliance with DORA’s ICT Business Continuity requirements (Article 11). 6. Backup, Restoration, and Recovery AlgoSec helps secure backup and recovery systems by recertifying firewall rules that protect critical assets and applications. DORA’s Backup, Restoration, and Recovery (Article 12) requirements emphasize that security controls must be periodically tested. AlgoSec automates these tests, ensuring your firewall rules support secure, segregated backup systems. Benefit : Automated recertification prevents outdated or insecure rules from jeopardizing your backup processes, ensuring you meet regulatory demands. Stay ahead of compliance with AlgoSec Meeting evolving regulations like DORA requires more than a one-time adjustment—it demands a dynamic, proactive approach to security and compliance. AlgoSec’s application-centric platform is designed to evolve with your business, continuously aligning firewall rules with active applications and automating the process of policy recertification and compliance reporting. By automating key processes such as risk assessments, firewall rule management, and policy recertification, AlgoSec ensures that your organization is always prepared for audits. Continuous monitoring and real-time alerts keep your security posture compliant with DORA and other regulations, while automated reports simplify audit preparation—minimizing the time spent on compliance and reducing human error. With AlgoSec, businesses not only meet compliance regulations but also enhance operational efficiency, improve security, and maintain alignment with global standards. As DORA and other regulatory frameworks evolve, AlgoSec helps you ensure that compliance is an integral, seamless part of your operations. Read our latest whitepaper and watch a short video to learn more about our application-centric approach to firewall rule recertification Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | How AppSec Network Engineers Can Align Security with the Business

    Eric Jeffery, AlgoSec’s regional solutions engineer, gives his view on the pivotal role of AppSec network engineers and how they can... Application Connectivity Management How AppSec Network Engineers Can Align Security with the Business Eric Jeffery 2 min read Eric Jeffery Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 7/13/22 Published Eric Jeffery, AlgoSec’s regional solutions engineer, gives his view on the pivotal role of AppSec network engineers and how they can positively impact the business It may surprise many people but the number one skills gap hampering today’s application security network engineers is primarily centred around the soft skills which includes communication, writing, presentation, team building and critical thinking. Why is this so important? Because first and foremost, their goal is to manage the organization’s security posture by deploying the best application security tools and technologies for the specific security and growth needs of the business. Keep things safe but don’t get in the way of revenue generation What an application security network engineer should not do is get in the way of developing new business-critical or revenue generating applications. At the same time, they need to understand that they have a leadership role to play in steering a safe and profitable course for the business. Starting with an in depth understanding of all wired traffic, AppSec network engineers need to know what applications are running on the network, how they communicate, who they communicate with and how to secure the traffic and connectivity flow associated with each one of them. An AppSec network engineer’s expertise should extend much more than mastering simple applications such as FTP and SSH. Rather, business traffic continuity should sit at the pinnacle of their responsibilities. There’s a lot of revenue generating traffic that they need to understand and put the right guardrails to protect it. However, equally as important, they need to make sure that the traffic is not hindered by outdated or irrelevant rules and policies, to avoid any negative financial impact on the organization. Layers of expertise beyond the OSI model A good starting point for any AppSec network engineer is to acquire a commanding knowledge of the seven layers of the OSI model, especially Layer 6 which covers Presentation. In practical terms, this means that they should have a thorough understanding of the network and transport layers – knowing what traffic is going across the network and why. It’s also helpful to have basic scripting knowledge and an understanding of simple scripts such as a cron job for scheduling tasks. It could also be useful to know some basic level programming like Perl and PHP. Beyond the network skills, AppSec network engineers should grasp the business vertical in which they operate. Once they gain an understanding of the business DNA and the applications that make it tick, then they can add real value to their organizations. What’s on the network vs. what should be on the network Should AppSec network engineers be expected to understand business and applications? Absolutely. With this level of skill and knowledge, they can help the business progress securely by corelating what is actually in the network environment versus what should be in the environment. Once they have clear understanding, they can clean up then environment and optimize network performance with enhanced security. This becomes more critical as organizations grow and develop, often allowing too much unnecessary traffic into the environment. Typically, this is how the scenario plays out: Applications are added or removed (decommissioned), or a new vendor or solution is brought on board and the firewall turns into a de facto router. The end result of such often leads to new vulnerabilities and too many unnecessary threat vectors. This is precisely where the aforementioned soft skills come in – an AppSec network engineer should be able to call out practices that don’t align with business goals. It’s also incumbent upon organizations to offer soft skills training to help their AppSec network engineers become more valuable to their teams. Need an application view to be effective in securing the business When firewalls become de facto routers, organizations end up relying on other areas for security. However, security needs to be aligned with the applications to prevent cyber attacks from getting onto the network and then from moving laterally across the network, should they manage to bypass the firewalls. All too often, east-west security is inadequate and therefore, AppSec network engineers need to look at network segmentation and application segmentation as part of a holistic network security strategy. The good news is that there are some great new technologies that can help with segmenting an internal network. The lesser good news is that there’s a danger in the thinking that by bolting on new tools, the problem will be solved. So often these tools are only partially deployed before the team moves onto the next “latest and the greatest” solution. When exploring new technologies, AppSec network engineers must ask themselves the following: Is there a matching use case for each solution? Will procurement of another tool lead to securing the environment or will it just be another useless “flavor of the month” tool? Irregardless, once the new technology solution is acquired, it is imperative to align the right skilful people with this technology to enable the organization to intelligently secure the whole environment before moving onto a new tool. To further hone this point, celebrating the introduction of a new firewall is superfluous if at the end of the day, it does not utilize the right rules and policies. Ushering some of these new technologies without proper deployment will only leave gaping holes and give organizations a false sense of security, exposing them to continuous risks. Don’t put the cloud native cart before the horse The role of an AppSec network engineer becomes even more critical when moving to the cloud. It starts with asking probing questions: What are the applications in the business and why are we moving them to the cloud? Is it for scalability, speed of access or to update a legacy system? Will the business benefit from the investment and the potential performance impact? It’s also important to consider the architecture in the cloud: Is it containerized, public cloud, private cloud or hybrid? Once you get definitive answers to these questions, create reference architectures and get senior level buy-in. Finally, think about the order in which the enterprise migrates applications to the cloud and maybe start with some non-critical applications that only affect a small number of locations or people before risking moving critical revenue generating applications. Don’t put the cart before the horse. DevSecOps: We should be working together; you can be sure the criminals are… Network application security is complicated enough without introducing internal squabbles over resources or sacrificing security for speed. Security teams and development teams need to work together and focus on what is best for your business. Again, this where the soft skills like teamwork, communications and project management come into play. The bottom line is this: Understand bad actors and prepare for the worst. The bad guys are just chomping at the bit, waiting for your organizations to make the next mistake. To beat them, DevSecOps teams must leverage all the resources they have available. Future promise or false sense of security? There are some exciting new technologies to look forward to in the horizon to help secure the application environment. Areas like quantum computing, machine learning, AI and blockchain show great promise in outfoxing the cyber criminals in the healthcare and financial services industries. It is expected that the AppSec network engineer will play a vital role in the viability of these new technologies. Yet, the right technology will still need to be applied to the right use case correctly and then fully deployed to in order see any effective results. The takeaway So much of the role of the AppSec network engineer is about taking a cold hard look at the goals of the business and asking some challenging questions. It all starts with “what’s right for the business?” rather than “what’s the latest technology we can get our hands on?” To be an effective AppSec network engineer, individuals should not only know the corporate network inside out, but they also must have an overall grasp of applications and the applicable business cases they support. Furthermore, collaboration with developers and operations (DevOps) becomes an agent for rapid deployment of revenue generating or mission critical applications. But it still goes back to the soft skills. To protect the business from taking needless security risks and demand a seat at the decision-making table, AppSec network engineers need to apply strong leadership, project management and communications skills To learn more on the importance of AppSec network engineers to your organization’s cybersecurity team, watch the following video Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | 5 Multi-Cloud Environments

    Top 5 misconfigurations to avoid for robust security Multi-cloud environments have become the backbone of modern enterprise IT, offering... Cloud Security 5 Multi-Cloud Environments Iris Stein 2 min read Iris Stein Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/23/25 Published Top 5 misconfigurations to avoid for robust security Multi-cloud environments have become the backbone of modern enterprise IT, offering unparalleled flexibility, scalability, and access to a diverse array of innovative services. This distributed architecture empowers organizations to avoid vendor lock-in, optimize costs, and leverage specialized functionalities from different providers. However, this very strength introduces a significant challenge: increased complexity in security management. The diverse security models, APIs, and configuration nuances of each cloud provider, when combined, create a fertile ground for misconfigurations. A single oversight can cascade into severe security vulnerabilities, lead to compliance violations, and even result in costly downtime and reputational damage. At AlgoSec, we have extensive experience in navigating the intricacies of multi-cloud security. Our observations reveal recurring patterns of misconfigurations that undermine even the most well-intentioned security strategies. To help you fortify your multi-cloud defences, we've compiled the top five multi-cloud misconfigurations that organizations absolutely must avoid. 1. Over-permissive policies: The gateway to unauthorized access One of the most pervasive and dangerous misconfigurations is the granting of overly broad or permissive access policies. In the rush to deploy applications or enable collaboration, it's common for organizations to assign excessive permissions to users, services, or applications. This "everyone can do everything" approach creates a vast attack surface, making it alarmingly easy for unauthorized individuals or compromised credentials to gain access to sensitive resources across your various cloud environments. The principle of least privilege (PoLP) is paramount here. Every user, application, and service should only be granted the minimum necessary permissions to perform its intended function. This includes granular control over network access, data manipulation, and resource management. Regularly review and audit your Identity and Access Management (IAM) policies across all your cloud providers. Tools that offer centralized visibility into entitlements and highlight deviations can be invaluable in identifying and rectifying these critical vulnerabilities before they are exploited. 2. Inadequate network segmentation: Lateral movement made easy In a multi-cloud environment, a flat network architecture is an open invitation for attackers. Without proper network segmentation, a breach in one part of your cloud infrastructure can easily lead to lateral movement across your entire environment. Mixing production, development, and sensitive data workloads within the same network segment significantly increases the risk of an attacker pivoting from a less secure development environment to a critical production database. Effective network segmentation involves logically isolating different environments, applications, and data sets. This can be achieved through Virtual Private Clouds (VPCs), subnets, security groups, network access control lists (NACLs), and micro-segmentation techniques. The goal is to create granular perimeters around critical assets, limiting the blast radius of any potential breach. By restricting traffic flows between different segments and enforcing strict ingress and egress rules, you can significantly hinder an attacker's ability to move freely within your cloud estate. 3. Unsecured storage buckets: A goldmine for data breaches Cloud storage services, such as Amazon S3, Azure Blob Storage, and Google Cloud Storage, offer incredible scalability and accessibility. However, their misconfiguration remains a leading cause of data breaches. Publicly accessible storage buckets, often configured inadvertently, expose vast amounts of sensitive data to the internet. This includes customer information, proprietary code, intellectual property, and even internal credentials. It is imperative to always double-check and regularly audit the access controls and encryption settings of all your storage buckets across every cloud provider. Implement strong bucket policies, restrict public access by default, and enforce encryption at rest and in transit. Consider using multifactor authentication for access to storage, and leverage tools that continuously monitor for publicly exposed buckets and alert you to any misconfigurations. Regular data classification and tagging can also help in identifying and prioritizing the protection of highly sensitive data stored in the cloud. 4. Lack of centralized visibility: Flying blind in a complex landscape Managing security in a multi-cloud environment without a unified, centralized view of your security posture is akin to flying blind. The disparate dashboards, logs, and security tools provided by individual cloud providers make it incredibly challenging to gain a holistic understanding of your security landscape. This fragmented visibility makes it nearly impossible to identify widespread misconfigurations, enforce consistent security policies across different clouds, and respond effectively and swiftly to emerging threats. A centralized security management platform is crucial for multi-cloud environments. Such a platform should provide comprehensive discovery of all your cloud assets, enable continuous risk assessment, and offer unified policy management across your entire multi-cloud estate. This centralized view allows security teams to identify inconsistencies, track changes, and ensure that security policies are applied uniformly, regardless of the underlying cloud provider. Without this overarching perspective, organizations are perpetually playing catch-up, reacting to incidents rather than proactively preventing them. 5. Neglecting Shadow IT: The unseen security gaps Shadow IT refers to unsanctioned cloud deployments, applications, or services that are used within an organization without the knowledge or approval of the IT or security departments. While seemingly innocuous, shadow IT can introduce significant and often unmanaged security gaps. These unauthorized resources often lack proper security configurations, patching, and monitoring, making them easy targets for attackers. To mitigate the risks of shadow IT, organizations need robust discovery mechanisms that can identify all cloud resources, whether sanctioned or not. Once discovered, these resources must be brought under proper security governance, including regular monitoring, configuration management, and adherence to organizational security policies. Implementing cloud access security brokers (CASBs) and network traffic analysis tools can help in identifying and gaining control over shadow IT instances. Educating employees about the risks of unauthorized cloud usage is also a vital step in fostering a more secure multi-cloud environment. Proactive management with AlgoSec Cloud Enterprise Navigating the complex and ever-evolving multi-cloud landscape demands more than just awareness of these pitfalls; it requires deep visibility and proactive management. This is precisely where AlgoSec Cloud Enterprise excels. Our solution provides comprehensive discovery of all your cloud assets across various providers, offering a unified view of your entire multi-cloud estate. It enables continuous risk assessment by identifying misconfigurations, policy violations, and potential vulnerabilities. Furthermore, AlgoSec Cloud Enterprise empowers automated policy enforcement, ensuring consistent security postures and helping you eliminate misconfigurations before they can be exploited. By providing this robust framework for security management, AlgoSec helps organizations maintain a strong and resilient security posture in their multi-cloud journey. Stay secure out there! The multi-cloud journey offers immense opportunities, but only with diligent attention to security and proactive management can you truly unlock its full potential while safeguarding your critical assets. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Building a Blueprint for a Successful Micro-segmentation Implementation

    Avishai Wool, CTO and co-founder of AlgoSec, looks at how organizations can implement and manage SDN-enabled micro-segmentation... Micro-segmentation Building a Blueprint for a Successful Micro-segmentation Implementation Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 6/22/20 Published Avishai Wool, CTO and co-founder of AlgoSec, looks at how organizations can implement and manage SDN-enabled micro-segmentation strategies Micro-segmentation is regarded as one of the most effective methods to reduce an organization’s attack surface, and a lack of it has often been cited as a contributing factor in some of the largest data breaches and ransomware attacks. One of the key reasons why enterprises have been slow to embrace it is because it can be complex and costly to implement – especially in traditional on-premise networks and data centers. In these, creating internal zones usually means installing extra firewalls, changing routing, and even adding cabling to police the traffic flows between zones, and having to manage the additional filtering policies manually. However, as many organizations are moving to virtualized data centers using Software-Defined Networking (SDN), some of these cost and complexity barriers are lifted. In SDN-based data centers the networking fabric has built-in filtering capabilities, making internal network segmentation much more accessible without having to add new hardware. SDN’s flexibility enables advanced, granular zoning: In principle, data center networks can be divided into hundreds, or even thousands, of microsegments. This offers levels of security that would previously have been impossible – or at least prohibitively expensive – to implement in traditional data centers. However, capitalizing on the potential of micro-segmentation in virtualized data centers does not eliminate all the challenges. It still requires the organization to deploy a filtering policy that the micro-segmented fabric will enforce, and writing this a policy is the first, and largest, hurdle that must be cleared. The requirements from a micro-segmentation policy A correct micro-segmentation filtering policy has three high-level requirements: It allows all business traffic – The last thing you want is to write a micro-segmented policy and have it block necessary business communication, causing applications to stop functioning. It allows nothing else – By default, all other traffic should be denied. It is future-proof – ‘More of the same’ changes in the network environment shouldn’t break rules. If you write your policies too narrowly, when something in the network changes, such as a new server or application, something will stop working. Write with scalability in mind. A micro-segmentation blueprint Now that you know what you are aiming for, how can you actually achieve it? First of all, your organization needs to know what your traffic flows are – what is the traffic that should be allowed. To get this information, you can perform a ‘discovery’ process. Only once you have this information, can you then establish where to place the borders between the microsegments in the data center and how to devise and manage the security policies for each of the segments in their network environment. I welcome you to download AlgoSec’s new eBook , where we explain in detail how to implement and manage micro-segmentation. AlgoSec Enables Micro-segmentation The AlgoSec Security Management Suite (ASMS) employs the power of automation to make it easy to define and enforce your micro-segmentation strategy inside the data center, ensure that it does not block critical business services, and meet compliance requirements. AlgoSec supports micro-segmentation by: Providing application discovery based on netflow information Identifying unprotected network flows that do not cross any firewall and are not filtered for an application Automatically identifying changes that will violate the micro-segmentation strategy Automatically implementing network security changes Automatically validating changes The bottom line is that implementing an effective network micro-segmentation strategy is now possible. It requires careful planning and implementation, but when carried out following a proper blueprint and with the automation capabilities of the AlgoSec Security Management Suite, it provides you with stronger security without sacrificing any business agility. Find out more about how micro-segmentation can help you boost your security posture, or request your personal demo . Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | Don’t Neglect Runtime Container Security

    The Web application and service business loves containers, but they present a security challenge. Prevasio has the skills and experience... Cloud Security Don’t Neglect Runtime Container Security Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 9/21/20 Published The Web application and service business loves containers, but they present a security challenge. Prevasio has the skills and experience to meet the challenge. Its runtime scanning technology and techniques will let you avoid the serious risks of vulnerable or compromised containers. The very thing that makes Docker containers convenient — their all-in-one, self-contained structure — makes them opaque to traditional security tests. Instances come and go as needed, sometimes deleting themselves within seconds. This scalable and transient nature isn’t amenable to the usual tools. Prevasio’s approach is specifically designed to analyze and test containers safely, finding any problems before they turn into security incidents. The container supply chain Container images put together code from many sources. They include original source or binary code, application libraries,language support, and configuration data. The developer puts them all together and delivers the resulting image. A complex container has a long supply chain,and many things can go wrong. Each item in the image could carry a risk. The container developer could use buggy or outdated components, or it could use them improperly. The files it imports could be compromised. A Docker image isn’t a straightforward collection of files, like a gzip file. An image may be derived from another image. Extracting all its files and parameters is possible but not straightforward. Vulnerabilities and malicious actions We can divide container risks into two categories: vulnerabilities and malicious code. Vulnerabilities A vulnerability unintentionally introduces risk. An outsider can exploit them to steal information or inflict damage. In a container, they can result from poor-quality or outdated components. The building process for a complex image is hard to keep up to date. There are many ways for something to go wrong. Vulnerability scanners don’t generally work on container images. They can’t find all the components. It’s necessary to check an active container to get adequate insight. This is risky if it’s done in a production environment. Container vulnerabilities include configuration weaknesses as well as problems in code. An image that uses a weak password or unnecessarily exposes administrative functions is open to attacks. Malicious code Malware in a container is more dangerous than vulnerabilities. It could intrude at any point in the supply chain. The developer might receive a compromised version of a runtime library. A few unscrupulous developers put backdoors into code that they ship. Sometimes they add backdoors for testing purposes and forget to remove them from the finished product. The only way to catch malware in a container is by its behavior. Monitoring the network and checking the file system for suspicious changes will discover misbehaving code. The Prevasio solution Security tools designed for statically loaded code aren’t very helpful with containers. Prevasio has created a new approach that analyzes containers without making any assumptions about their safety. It loads them into a sandboxed environment where they can’t do any harm and analyzes them.The analysis includes the following: Scanning of components for known vulnerabilities Automated pen-test attacks Behavioral analysis of running code Traffic analysis to discover suspicious data packets Machine learning to identify malicious binaries The analysis categorizes an image as benign,vulnerable, exploitable, dangerous, or harmful. The administrator looks at agraph to identify any problems visually, without digging through logs. They can tell at a glance whether an image is reasonably safe to run, needs to be sent back for fixes, or should be discarded on the spot. If you look at competing container security solutions, you’ll find that the key is runtime technology. Static analysis, vulnerability scans, and signature checking won’t get you enough protection by themselves. Prevasio gives you the most complete and effective checking of container images, helping you to avoid threats to your data and your business. Schedule a demo Related Articles Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Convergence didn’t fail, compliance did. Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Assessing the Value of Network Segmentation from a Business Application Perspective - AlgoSec

    Assessing the Value of Network Segmentation from a Business Application Perspective Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Infrastructure as code: Connectivity risk analysis - AlgoSec

    Infrastructure as code: Connectivity risk analysis Datasheet Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

bottom of page