top of page

Search results

615 results found with an empty search

  • Secure application connectivity across your hybrid environment - AlgoSec

    Secure application connectivity across your hybrid environment E-BOOK Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Case Study Logisticas - AlgoSec

    Case Study Logisticas Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • The state of automation in security 2016 - AlgoSec

    The state of automation in security 2016 Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | Operation “Red Kangaroo”: Industry’s First Dynamic Analysis of 4M Public Docker Container Images

    Linux containers aren’t new. In fact, this technology was invented 20 years ago. In 2013, Docker entered the scene and revolutionized... Cloud Security Operation “Red Kangaroo”: Industry’s First Dynamic Analysis of 4M Public Docker Container Images Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 12/1/20 Published Linux containers aren’t new. In fact, this technology was invented 20 years ago. In 2013, Docker entered the scene and revolutionized Linux containers by offering an easy-to-use command line interface (CLI), an engine, and a registry server. Combined, these technologies have concealed all the complexity of building and running containers, by offering one common industry standard . As a result, Docker’s popularity has sky-rocketed, rivalling Virtual Machines, and transforming the industry. In order to locate and share Docker container images, Docker is offering a service called Docker Hub . Its main feature, repositories , allows the development community to push (upload) and pull (download) container images. With Docker Hub, anyone in the world can download and execute any public image, as if it was a standalone application. Today, Docker Hub accounts over 4 million public Docker container images . With 8 billion pulls (downloads) in January 2020 and growing , its annualized image pulls should top 100 billion this year. For comparison , Google Play has 2.7M Android apps in its store, with a download rate of 84 billion downloads a year. How many container images currently hosted at Docker Hub are malicious or potentially harmful? What sort of damage can they inflict? What if a Docker container image downloaded and executed malware at runtime? Is there a reliable way to tell that? What if a compromised Docker container image was downloaded by an unsuspecting customer and used as a parent image to build and then deploy a new container image into production, practically publishing an application with a backdoor built into it? Is there any way to stop that from happening? At Prevasio, we asked ourselves these questions multiple times. What we decided to do has never been done before. The Challenge At Prevasio, we have built a dynamic analysis sandbox that uses the same principle as a conventional sandbox that ‘detonates’ malware in a safe environment. The only difference is that instead of ‘detonating’ an executable file, such as a Windows PE file or a Linux ELF binary, Prevasio Analyzer first pulls (downloads) an image from any container registry, and then ‘detonates’ it in its own virtual environment, outside the organization/customer infrastructure. Using our solution, we then dynamically analyzed all 4 million container images hosted at Docker Hub. In order to handle such a massive volume of images, Prevasio Analyzer was executed non-stop for a period of one month on 800 machines running in parallel. The result of our dynamic scan reveals that: 51 percent of all containers had “critical” vulnerabilities, while 13 percent were classified as “high” and four percent as “moderate” vulnerabilities. Six thousand containers were riddled with cryptominers, hacking tools/pen testing frameworks, and backdoor trojans. While many cryptominers and hacking tools may not be malicious per se, they present a potentially unwanted issue to an enterprise. More than 400 container images (with nearly 600,000 pulls) of weaponized Windows malware crossing over into the world of Linux. This crossover is directly due to the proliferation of cross-platform code (e.g. GoLang, .NET Core and PowerShell Core). Our analysis of malicious containers also shows that quite a few images contain a dynamic payload. That is, an image in its original form does not have a malicious binary. However, at runtime, it might be scripted to download a source of a coinminer, to then compile and execute it. A dynamic analysis sandbox, such as Prevasio Analyzer, is the only solution that provides a behavioral analysis of Docker containers. It is built to reveal malicious intentions of Docker containers by executing them in its own virtual environment, revealing a full scope of their behavior. The whitepaper with our findings is available here . Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • State of Ransomware: Caught between perception and reality | AlgoSec

    Learn best practices to secure your cloud environment and deliver applications securely Webinars State of Ransomware: Caught between perception and reality Ransomware continues to be a major problem—and the problem is only getting worse. An exclusive ExtraHop 2022 survey conducted with over 500 security and IT decision makers provided some sobering responses: 85% of those surveyed reported suffering at least one ransomware attack while an alarming 74% have experienced multiple attacks. Yet most IT decision makers (77%) are confident in their ability to prevent or mitigate all cybersecurity threats, including ransomware. In this webinar, we take an in-depth look into the implications of this alarming trend and provide a turnkey strategy that organizations can implement today to safeguard their most critical data stored in their business applications and increase their level of ransomware preparedness. Join us for: * In-depth analysis of infamous ransomware attacks * Ways to identify and remediate vulnerabilities at the application level * A practical application centric approach that can support your pre-existing security measures * Mitigation measures to consider at the onset of your next ransomware attack * Ransomware future trends predictions January 24, 2023 Eric Jeffery Regional Sales Engineer Relevant resources Reducing risk of ransomware attacks - back to basics Keep Reading Fighting Ransomware - CTO Roundtable Insights Keep Reading Ransomware Attack: Best practices to help organizations proactively prevent, contain and Keep Reading Choose a better way to manage your network Choose a better way to manage your network Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Manage Network Security Policies From Within Servicenow - AlgoSec

    Manage Network Security Policies From Within Servicenow Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | Cloud Security Checklist: Key Steps and Best Practices

    A Comprehensive Cloud Security Checklist for Your Cloud Environment There’s a lot to consider when securing your cloud environment.... Cloud Security Cloud Security Checklist: Key Steps and Best Practices Rony Moshkovich 2 min read Rony Moshkovich Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 7/21/23 Published A Comprehensive Cloud Security Checklist for Your Cloud Environment There’s a lot to consider when securing your cloud environment. Threats range from malware to malicious attacks, and everything in between. With so many threats, a checklist of cloud security best practices will save you time. First we’ll get a grounding in the top cloud security risks and some key considerations. The Top 5 Security Risks in Cloud Computing Understanding the risks involved in cloud computing is a key first step. The top 5 security risks in cloud computing are: 1. Limited visibility Less visibility means less control. Less control could lead to unauthorized practices going unnoticed. 2. Malware Malware is malicious software, including viruses, ransomware, spyware, and others. 3. Data breaches Breaches can lead to financial losses due to regulatory fines and compensation. They may also cause reputational damage. 4. Data loss The consequences of data loss can be severe, especially it includes customer information. 5. Inadequate cloud security controls If cloud security measures aren’t comprehensive, they can leave you vulnerable to cyberattacks. Key Cloud Security Checklist Considerations 1. Managing User Access and Privileges Properly managing user access and privileges is a critical aspect of cloud infrastructure. Strong access controls mean only the right people can access sensitive data. 2. Preventing Unauthorized Access Implementing stringent security measures, such as firewalls, helps fortify your environment. 3. Encrypting Cloud-Based Data Assets Encryption ensures that data is unreadable to unauthorized parties. 4. Ensuring Compliance Compliance with industry regulations and data protection standards is crucial. 5. Preventing Data Loss Regularly backing up your data helps reduce the impact of unforeseen incidents. 6. Monitoring for Attacks Security monitoring tools can proactively identify suspicious activities, and respond quickly. Cloud Security Checklist Understand cloud security risks Establish a shared responsibility agreement with your cloud services provider (CSP) Establish cloud data protection policies Set identity and access management rules Set data-sharing restrictions Encrypt sensitive data Employ a comprehensive data backup and recovery plan Use malware protection Create an update and patching schedule Regularly assess cloud security Set up security monitoring and logging Adjust cloud security policies as new issues emerge Let’s take a look at these in more detail. Full Cloud Security Checklist 1. Understand Cloud Security Risks 1a. Identify Sensitive Information First, identify all your sensitive information. This data could range from customer information to patents, designs, and trade secrets. 1b. Understand Data Access and Sharing Use access control measures, like role-based access control (RBAC), to manage data access. You should also understand and control how data is shared. One idea is to use data loss prevention (DLP) tools to prevent unauthorized data transfers. 1c. Explore Shadow IT Shadow IT refers to using IT tools and services without your company’s approval. While these tools can be more productive or convenient, they can pose security risks. 2. Establish a Shared Responsibility Agreement with Your Cloud Service Provider (CSP) Understanding the shared responsibility model in cloud security is essential. There are various models – IaaS, PaaS, or SaaS. Common CSPs include Microsoft Azure and AWS. 2a. Establish Visibility and Control It’s important to establish strong visibility into your operations and endpoints. This includes understanding user activities, resource usage, and security events. Using security tools gives you a centralized view of your secure cloud environment. You can even enable real-time monitoring and prompt responses to suspicious activities. Cloud Access Security Brokers (CASBs) or cloud-native security tools can be useful here. 2b. Ensure Compliance Compliance with relevant laws and regulations is fundamental. This could range from data protection laws to industry-specific regulations. 2c. Incident Management Despite your best efforts, security incidents can still occur. Having an incident response plan is a key element in managing the impact of any security events. This plan should tell team members how to respond to an incident. 3. Establish Cloud Data Protection Policies Create clear policies around data protection in the cloud . These should cover areas such as data classification, encryption, and access control. These policies should align with your organizational objectives and comply with relevant regulations. 3a. Data Classification You should categorize data based on its sensitivity and potential impact if breached. Typical classifications include public, internal, confidential, and restricted data. 3b. Data Encryption Encryption protects your data in the cloud and on-premises. It involves converting your data so it can only be read by those who possess the decryption key. Your policy should mandate the use of strong encryption for sensitive data. 3c. Access Control Each user should only have the access necessary to perform their job function and no more. Policies should include password policies and changes of workloads. 4. Set Identity and Access Management Rules 4a. User Identity Management Identity and Access Management tools ensure only the right people access your data. Using IAM rules is critical to controlling who has access to your cloud resources. These rules should be regularly updated. 4b. 2-Factor and Multi-Factor Authentication Two-factor authentication (2FA) and multi-factor authentication (MFA) are useful tools. You reduce the risk by implementing 2FA or MFA, even if a password is compromised. 5. Set Data Sharing Restrictions 5a. Define Data Sharing Policies Define clear data-sharing permissions. These policies should align with the principles of least privilege and need-to-know basis. 5b. Implement Data Loss Prevention (DLP) Measures Data Loss Prevention (DLP) tools can help enforce data-sharing policies. These tools monitor and control data movements in your cloud environment. 5c. Audit and Review Data Sharing Activities Regularly review and audit your data-sharing activities to ensure compliance. Audits help identify any inappropriate data sharing and provide insights for improvement. 6. Encrypt Sensitive Data Data encryption plays a pivotal role in safeguarding your sensitive information. It involves converting your data into a coded form that can only be read after it’s been decrypted. 6a. Protect Data at Rest This involves transforming data into a scrambled form while it’s in storage. It ensures that even if your storage is compromised, the data remains unintelligible. 6b. Data Encryption in Transit This ensures that your sensitive data remains secure while it’s being moved. This could be across the internet, over a network, or between components in a system. 6c. Key Management Managing your encryption keys is just as important as encrypting the data itself. Keys should be stored securely and rotated regularly. Additionally, consider using hardware security modules (HSMs) for key storage. 6d. Choose Strong Encryption Algorithms The strength of your encryption depends significantly on the algorithms you use. Choose well-established encryption algorithms. Advanced Encryption Standard (AES) or RSA are solid algorithms. 7. Employ a Comprehensive Data Backup and Recovery Plan 7a. Establish a Regular Backup Schedule Install a regular backup schedule that fits your organization’s needs . The frequency of backups may depend on how often your data changes. 7b. Choose Suitable Backup Methods You can choose from backup methods such as snapshots, replication, or traditional backups. Each method has its own benefits and limitations. 7c. Implement a Data Recovery Strategy In addition to backing up your data, you need a solid strategy for restoring that data if a loss occurs. This includes determining recovery objectives. 7d. Test Your Backup and Recovery Plan Regular testing is crucial to ensuring your backup and recovery plan works. Test different scenarios, such as recovering a single file or a whole system. 7e. Secure Your Backups Backups can become cybercriminals’ targets, so they also need to be secured. This includes using encryption to protect backup data and implementing access controls. 8. Use Malware Protection Implementing robust malware protection measures is pivotal in data security. It’s important to maintain up-to-date malware protection and routinely scan your systems. 8a. Deploy Antimalware Software Deploy antimalware software across your cloud environment. This software can detect, quarantine, and eliminate malware threats. Ensure the software you select can protect against a wide range of malware. 8b. Regularly Update Malware Definitions Anti-malware relies on malware definitions. However, cybercriminals continuously create new malware variants, so these definitions become outdated quickly. Ensure your software is set to automatically update. 8c. Conduct Regular Malware Scans Schedule regular malware scans to identify and mitigate threats promptly. This includes full system scans and real-time scanning. 8d. Implement a Malware Response Plan Develop a comprehensive malware response plan to ensure you can address any threats. Train your staff on this plan to respond efficiently during a malware attack. 8e. Monitor for Anomalous Activity Continuously monitor your systems for any anomalous activity. Early detection can significantly reduce the potential damage caused by malware. 9. Create an Update and Patching Schedule 9a. Develop a Regular Patching Schedule Develop a consistent schedule for applying patches and updates to your cloud applications. For high-risk vulnerabilities, consider implementing patches as soon as they become available. 9b. Maintain an Inventory of Software and Systems You need an accurate inventory of all software and systems to manage updates and patches. This inventory should include the system version, last update, and any known vulnerabilities. 9c. Automation Where Possible Automating the patching process can help ensure that updates are applied consistently. Many cloud service providers offer tools or services that can automate patch management. 9d. Test Patches Before Deployment Test updates in a controlled environment to ensure work as intended. This is especially important for patches to critical systems. 9e. Stay Informed About New Vulnerabilities and Patches Keep abreast of new vulnerabilities and patches related to your software and systems. Being aware of the latest threats and solutions can help you respond faster. 9f. Update Security Tools and Configurations Don’t forget to update your cloud security tools and configurations regularly. As your cloud environment evolves, your security needs may change. 10. Regularly Assess Cloud Security 10a. Set up cloud security assessments and audits Establish a consistent schedule for conducting cybersecurity assessments and security audits. Audits are necessary to confirm that your security responsibilities align with your policies. These should examine configurations, security controls, data protection and incident response plans. 10b. Conduct Penetration Testing Penetration testing is a proactive approach to identifying vulnerabilities in your cloud environment. These are designed to uncover potential weaknesses before malicious actors do. 10c. Perform Risk Assessments These assessments should cover a variety of technical, procedural, and human risks. Use risk assessment results to prioritize your security efforts. 10d. Address Assessment Findings After conducting an assessment or audit, review the findings and take appropriate action. It’s essential to communicate any changes effectively to all relevant personnel. 10f. Maintain Documentation Keep thorough documentation of each assessment or audit. Include the scope, process, findings, and actions taken in response. 11. Set Up Security Monitoring and Logging 11a. Intrusion Detection Establish intrusion detection systems (IDS) to monitor your cloud environment. IDSs operate by recognizing patterns or anomalies that could indicate unauthorized intrusions. 11b. Network Firewall Firewalls are key components of network security. They serve as a barrier between secure internal network traffic and external networks. 11c. Security Logging Implement extensive security logging across your cloud environment. Logs record the events that occur within your systems. 11d. Automate Security Alerts Consider automating security alerts based on triggering events or anomalies in your logs. Automated alerts can ensure that your security team responds promptly. 11e. Implement Information Security and Event Management (SIEM) System A Security Information and Event Management (SIEM) system can your cloud data. It can help identify patterns, security breaches, and generate alerts. It will give a holistic view of your security posture. 11f. Regular Review and Maintenance Regularly review your monitoring and logging practices to ensure they remain effective. as your cloud environment and the threat landscape evolve. 12. Adjust Cloud Security Policies as New Issues Emerge 12a. Regular Policy Reviews Establish a schedule for regular review of your cloud security policies. Regular inspections allow for timely updates to keep your policies effective and relevant. 12b. Reactive Policy Adjustments In response to emerging threats or incidents, it may be necessary to adjust on an as-needed basis. Reactive adjustments can help you respond to changes in the risk environment. 12c. Proactive Policy Adjustments Proactive policy adjustments involve anticipating future changes and modifying your policies accordingly. 12d. Stakeholder Engagement Engage relevant stakeholders in the policy review and adjustment process. This can include IT staff, security personnel, management, and even end-users. Different perspectives can provide valuable insights. 12e. Training and Communication It’s essential to communicate changes whenever you adjust your cloud security policies. Provide training if necessary to ensure everyone understands the updated policies. 12f. Documentation and Compliance Document any policy adjustments and ensure they are in line with regulatory requirements. Updated documentation can serve as a reference for future reviews and adjustments. Use a Cloud Security Checklist to Protect Your Data Today Cloud security is a process, and using a checklist can help manage risks. Companies like Prevasio specialize in managing cloud security risks and misconfigurations, providing protection and ensuring compliance. Secure your cloud environment today and keep your data protected against threats. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Prevasio Datasheet - AlgoSec

    Prevasio Datasheet Datasheet Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • Assessing the Value of Network Segmentation from a Business Application Perspective - AlgoSec

    Assessing the Value of Network Segmentation from a Business Application Perspective Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

  • AlgoSec | Managing network connectivity during mergers and acquisitions

    Prof. Avishai Wool discusses the complexities of mergers and acquisitions for application management and how organizations can securely... Security Policy Management Managing network connectivity during mergers and acquisitions Prof. Avishai Wool 2 min read Prof. Avishai Wool Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 7/22/21 Published Prof. Avishai Wool discusses the complexities of mergers and acquisitions for application management and how organizations can securely navigate the transition It comes as no surprise that the number of completed Mergers and Acquisitions (M&As) dropped significantly during the early stages of the pandemic as businesses closed ranks and focused on surviving rather than thriving. However, as we start to find some reprieve, many experts forecast that we’ll see an upturn in activity. In fact, by the end of 2020, M&A experienced a sudden surge and finished the year with only a 3% decline on 2019 levels. Acquiring companies is more than just writing a cheque. There are hundreds of things to consider both big and small, from infrastructure to staffing, which can make or break a merger. With that in mind, what do businesses need to do in order to ensure a secure and successful transition? When two worlds collide For many businesses, a merger or acquisition is highly charged. There’s often excitement about new beginnings mixed with trepidation about major business changes, not least when it comes to IT security. Mergers and acquisitions are like two planets colliding, each with their own intricate ecosystem. You have two enterprises running complex IT infrastructures with hundreds if not thousands of applications that don’t just simply integrate together. More often than not they perform replicated functions, which implies that some need to be used in parallel, while others need to be decommissioned and removed. This means amending, altering, and updating thousands of policies to accommodate new connections, applications, servers, and firewalls without creating IT security risks or outages. In essence, from an IT security perspective, a merger or acquisition is a highly complicated project that, if not planned and implemented properly, can have a long-term impact on business operations. Migrating and merging infrastructures One thing a business will need before it can even start the M&A process is an exhaustive inventory of all business applications spanning both businesses. An auto-discovery tool can assist here, collecting data from any application that is active on the network and adding it to a list. This should allow the main business to create a map of network connectivity flows which will form the cornerstone of the migration from an application perspective. Next comes security. A vulnerability assessment should be carried across both enterprise networks to identify any business-critical applications that may be put at risk. This assessment will give the main business the ability to effectively ‘rank’ applications and devices in terms of risk and necessity, allowing for priority lists to be created. This will help SecOps focus their efforts on crucial areas of the business that contain sensitive customer data, for instance. By following these steps you’ll get a clear organizational view of the entire enterprise environment and be able to identify and map all the critical business applications, linking vulnerabilities and cyber risks to specific applications and prioritize remediation actions based on business-driven needs. The power of automation While the steps outlined above will give you with an accurate picture of your IT topology and its business risk, this is only the first half of the story. Now you need to update security policies to support changes to business applications. Automation is critical when it comes to maintaining security during a merger or acquisition. An alarming number of data breaches are due to firewall misconfigurations, often resulting from attempts to change policies manually in a complex network environment. This danger increases with M&A, because the two merging enterprises likely have different firewall setups in place, often mixing traditional with next-generation firewalls or firewalls that come from different vendors. Automation is therefore essential to ensure the firewall change management process is handled effectively and securely with minimal risk of misconfigurations. Achieving true Zero-Touch automation in the network security domain is not an easy task but over time, you can let your automation solution run handsfree as you conduct more changes and gain trust through increasing automation levels step by step. Our Security Management Solution enables IT and security teams to manage and control all their security devices – from cloud controls in public clouds, SDNs, and on-premise firewalls from one single console. With AlgoSec you can automate time-consuming security policy changes and proactively assess risk to ensure continuous compliance. It is our business-driven approach to security policy management that enables organizations to reduce business risk, ensure security and continuous compliance, and drive business agility. Maintaining security throughout the transition A merger or acquisition presents a range of IT challenges but ensuring business applications can continue to run securely throughout the transition is critical. If you take an application centric approach and utilize automation, you will be in the best position for the merger/migration and will ultimately drive long term success. To learn more or speak to one of our security experts, schedule your personal demo . Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • AlgoSec | What is a Cloud-Native Application Protection Platform (CNAPP)

    Cloud environments are complex and dynamic. Due to the complexity and multifacetedness of cloud technologies, cloud-native applications... Cloud Security What is a Cloud-Native Application Protection Platform (CNAPP) Ava Chawla 2 min read Ava Chawla Short bio about author here Lorem ipsum dolor sit amet consectetur. Vitae donec tincidunt elementum quam laoreet duis sit enim. Duis mattis velit sit leo diam. Tags Share this article 11/24/22 Published Cloud environments are complex and dynamic. Due to the complexity and multifacetedness of cloud technologies, cloud-native applications are challenging to safeguard. As a result, security teams use multiple security solutions, like CWPP and CSPM, to protect applications. The problem with this approach is that handling multiple security tools is laborious, time-consuming, and inefficient. Cloud-native application protection platform (CNAPP) is a new cloud security solution that promises to solve this problem. What is CNAPP? A cloud-native application protection platform (CNAPP) is an all-in-one tool with the capabilities of different cloud-native security tools. It combines the security features of multiple tools and provides comprehensive protection – from the development and configuration stages to deployment and runtime. Container security is here to stay A CNAPP combines CSPM, CIEM, IAM, CWPP, and more in one tool. It streamlines cloud security monitoring, threat detection, and remediation processes. The all-in-one platform gives organizations better visibility into threats and vulnerabilities. Instead of using multiple tools to receive alerts and formulate a remediation plan, a CNAPP minimizes complexity and enables security teams to monitor and draw insights from a single platform. How Does CNAPP Work and Why is it So Important to Have? This new cloud security approach offers the capabilities of multiple security tools in one software. Some of these security functions include Cloud Security Posture Management (CSPM), Infrastructure-as-Code (IaC) Scanning, Cloud Workload Protection Platform (CWPP), Cloud Network Security Connectivity (CNSC), and Kubernetes Security Posture Management (CIEM). The all-in-one platform centralizes insights, enabling security professionals to monitor and analyze data from the same space. A CNAPP identifies risks with strong context, provides detailed alerts, and offers automation features to fix vulnerabilities and misconfigurations. A CNAPP is essential because it reduces complexity and minimizes overhead. Given how complex and dynamic the cloud environments are, organizations are faced with enormous security threats. Enterprises deploy applications on multiple private and public clouds leveraging various dynamic, mixed technologies. This makes securing cloud assets significantly challenging. To cope with the complexity, security operations teams rely on multiple cloud security solutions. SecOps use various solutions to protect modern development practices, such as containers, Kubernetes, serverless functions, CI/CD pipelines, and infrastructure as code (IaC). This approach has been helpful. That said, it’s laborious and inefficient. In addition to not providing a broad view of security risks, dealing with multiple tools negatively impacts accuracy and decreases productivity. Having to correlate data from several platforms leads to errors and delayed responses. A CNAPP takes care of these problems by combining the functionalities of multiple tools in one software. It protects every stage of the cloud application lifecycle, from development to runtime. Leveraging advanced analytics and remediation automation, CNAPPs help organizations address cloud-native risks, harden applications, and institute security best practices. What Problems Does a CNAPP Solve? This new category of cloud application security tool is revolutionizing the cybersecurity landscape. It solves major challenges DevSecOps have been dealing with. That said, a CNAPP helps security teams to solve the following problems. 1. Enhancing Visibility and Quantifying Risks A CNAPP offers a broader visibility of security risks. It leverages multiple security capabilities to enable DevOps and DevSecOps to spot and fix potential security issues throughout the entire application lifecycle. The all-in-one security platform enables teams to keep tabs on all cloud infrastructures ( like apps, APIs, and classified data) and cloud services (like AWS, Azure, and Google Cloud). In addition, it provides insights that help security teams to quantify risks and formulate data-driven remediation strategies. 2. Combined Cloud Security Solution A CNAPP eliminates the need to use multiple cloud-native application protection solutions. It provides all the features needed to detect and solve security issues. Scanning, detection, notification, and reporting are consolidated in one software. This reduces human error, shortens response time, and minimizes the cost of operation. 3. Secure Software Development It reinforces security at every stage of the application lifecycle. The tool helps DevOps teams to shift left, thus minimizing the incidence of vulnerabilities or security issues at runtime. 4. Team Collaboration Collaboration is difficult and error-prone when teams are using multiple tools. Data correlation and analysis take more time since team members have more than one tool to deal with. A CNAPP is a game-changer! It has advanced workflows, data correlation, analytics, and remediation features. These functionalities enhance team collaboration and increase productivity. What are CNAPP Features and Capabilities/Key Components of CNAPP? Even though the features and capabilities of CNAPPs differ (based on vendors), there are key components an effective CNAPP should have. That being said, here are the seven key components: Cloud Security Posture Management (CSPM) A CSPM solution focuses on maintaining proper cloud configuration. It monitors, detects, and fixes misconfigurations & compliance violations. CSPM monitors cloud resources and alerts security teams when a non-compliant resource is identified. Infrastructure-as-Code (IaC) Scanning IaC Scanning enables the early detection of errors (misconfigurations) in code. Spotting misconfigurations before deployment helps to avoid vulnerabilities at runtime. This tool is used to carry out some kind of code review. The purpose is to ensure code quality by scanning for vulnerable points, compliance issues, and violations of policies. Cloud Workload Protection Platform (CWPP) Cloud workload protection platform (CSPM) secures cloud workloads, shielding your resources from security threats. CSPM protects various workloads, from virtual machines (VMs) and databases to Kubernetes and containers. A CWPP monitors and provides insights to help security teams prevent security breaches. Cloud Network Security Connectivity (CNSC) Cloud Network Security Connectivity (CNSC) provides complete real-time visibility and access to risks across all your cloud resources and accounts. This cloud security solution allows you to explore the risks, activate security rules, and suppress whole risks or risk triggers, export risk trigger details, access all network rules in the context of their policy sets and create risk reports. Kubernetes Security Posture Management (KSPM) Kubernetes security posture management (KSPM) capability enables organizations to maintain standard security posture by preventing Kubernetes misconfigurations and compliance violations. KSPM solution, similar to Cloud Security Posture Management (CSPM), automates Kubernetes security, reinforces compliance, identifies misconfigurations, and monitors Kubernetes clusters to ensure maximum security. Cloud Infrastructure Entitlement Management (CIEM) A Cloud Infrastructure Entitlement Management (CIEM) tool is used to administer permissions and access policies. To maintain the integrity of cloud and multi-cloud environments, identities and access privileges must be regulated. This is where CIEM comes in! CIEM solutions, also known as Cloud permissions Management Solutions, help organizations prevent data breaches by enforcing the principle of least privileges. Integration to Software Development Activities This component of CNAPP focuses on integrating cloud-native application protection solutions into the development phase to improve reliability and robustness in the CI/CD pipeline stage. What are the Benefits of CNAPP? Transitioning from using multiple cloud security tools to implementing a CNAPP solution can benefit your company in many ways. Some benefits include: 1. Streamlines Security Operations Managing multiple security tools decreases efficiency and leads to employee burnout. Correlating data from different software is laborious and error-prone. It prolongs response time. A CNAPP streamlines activities by giving security teams broad visibility from a single tool. This makes monitoring and remediation easier than ever – making security teams more efficient and productive. 2. Better Visibility into Risks A CNAPP provides better visibility into security risks associated with your cloud infrastructure. It covers all aspects of cloud-native application protection, providing security teams with the necessary insights to close security gaps, harden applications, and ward off threats. 3. Improves Security With Automation Risk detection and vulnerability management are automated. Automation of security tasks increases reliability, reduces human error, and enables rapid response to threats. It combines automation and advanced analytics to offer organizations accurate insights into risks. 4. Reduces the Number of Bug Fixes A CNAPP prevents vulnerabilities at runtime by detecting threats and errors in the CI/CD pipeline phases. This approach improves DevOps team productivity and decreases the number of bug fixes after deployment. In other words, shifting left ensures the deployment of high-quality code. 5. Reduces Overhead Costs If you want to cut down the cost of operation, consider choosing a CNAPP over CSPM and other standalone cloud security tools. It reduces overhead by eliminating the need to operate and maintain multiple cloud security solutions. AlgoSec CNAPP with Prevasio and CloudFlow Cloud environments are increasingly complex and dynamic. Maintaining secure cloud infrastructures has become more challenging than ever. Security teams rely on multiple tools to gain visibility into risks. CNAPPs promise to fix the challenges of using multiple solutions to protect cloud-native applications. Gartner, the first to describe the CNAPP category, encourages organizations to consider emerging CNAPP providers and adopt an all-in-one security approach that takes care of the entire life cycle of applications – covering development and runtime protection. Prevasio makes transitioning to a CNAPP a fantastic experience. Prevasio takes pride in helping organizations protect their cloud-native applications and other cloud assets. Prevasio’s agentless cloud-native application protection platform (CNAPP) offers increased risk visibility and enables security teams to reinforce best practices. Contact us to learn how we can help you manage your cloud security. Schedule a demo Related Articles 2025 in review: What innovations and milestones defined AlgoSec’s transformative year in 2025? AlgoSec Reviews Mar 19, 2023 · 2 min read Navigating Compliance in the Cloud AlgoSec Cloud Mar 19, 2023 · 2 min read 5 Multi-Cloud Environments Cloud Security Mar 19, 2023 · 2 min read Speak to one of our experts Speak to one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Schedule a call

  • Industry’s First Dynamic Analysis of 4 million Publicly Available Docker Hub Container Images - AlgoSec

    Industry’s First Dynamic Analysis of 4 million Publicly Available Docker Hub Container Images Download PDF Schedule time with one of our experts Schedule time with one of our experts Work email* First name* Last name* Company* country* Select country... Short answer* By submitting this form, I accept AlgoSec's privacy policy Continue

bottom of page